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ON HILBERT SEMIGROUP RINGS*

CroLoNn Kim

A ring R is called a Hilbert ring if every prime ideal of
R is an intersection of primitive ideals. When R is com-
mutative, Gilmer {31 shows that equivalent conditions for
RU{x,};e1] to be a Hilbert ring. But the weakness of his
results is including commutativity.

In this paper, we shall discuss Hilbert semigroup ring
with noncommutative coefficients rings. Actually, when S
is a cancellative monoid and the coefficient ring R is a P[
ring, the condition that the semigroup ring R[S] to be
Hilbert will be observed. All monoid considered are assumed
to be commutative.

We begin the following.

LEMMA 1. Let R bea P/ ring and P be an ideal of R.
Then P is a primitive ideal if and only if P is a maximal

ideal.

PrROOF. Suppose P is a2 maximal ideal of R. Then the

factor ring R/P is a2 simple ring. So it is primitive and
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therefore P is a primitive ideal.

Conversely, if P is a primitive ideal of R, then R/P is
a primitive ring. Since R is PI, R/P is PI. Thus the
factor ring R/P is a primitive PJ ring and so it is simple
by Kaplansky’s Theorem ({4].

We denote the center and the classical quotient ring of

R by Z(R) and Q(R), respectively.

LEmMmA 2. Let R be a prime PJ ring and Q(R) the
classical quotient ring of R. Then Q(R)=Rla™!'] for some
0£a in Z(R) if and only if ANR=0 for some maximal A
of R{z].

PrROOF. Suppose Q(R)=Rle™1] with 0 # a=Z(R). Then
the map o from R[x] to R[a"'] induced from the map sen-
ding x to 27! is a ring epimorphism. Now since Q(R)=
R[a™'] is simple Artinian, A=ker ¢ is a maximal ideal of
Rix]. In this case R[x]/A = Rla"'1=Q(R) and ANR=0
since the map sending 7 to 7+ A is one to one.

Conversely, assume that AYR=0 for some maximal ideal
A of R[z]. Let u=x+A4 in the ring R[x]/A. Then since
ANR=0, RC R{%] and R{uJ=R{x]/A is simple Artinian.
So QR)[u]l=Riu]l=Q(R[%]). If =0, then R=R{zx] is
simple Artinian and so we are done. Hence we may assume
that ## 0. Since # is a central element of the simple
Artinian ring R[u], u is in the center of Rf#]. Bu: note
that the center of a simple Artinian ring is a field. So u
is invertible in R[#]. Actually 2 '&Z(R[21)=Z(Q(R)[u]).

say

wl=optaiut o+ a,ut
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with @, oy, -, o,=Q(R) and «,# 0. But since Q(R) is
simple, @(R)a,Q(R)=Q(R) and so there exist ¢,, ¢1, -+, s
and ¢, ¢, -+, ¢/ in Q(R) such that

<

L g =1

Thus }i‘ g. (e u 1+t au?+ agu—1) g, =0. Therefore 8,+
=1

P+ -+ Bur+ur" =0 with some B,SQ(R). Now let £ be
the least positive integer such that

w4 By w5 Bru+ By=0

with 8,€Q(R), t=0,1,--,2~1. In this case our claim is
IES T 2AN"
(8% 1y

4+ {
2n [

that By B, - ,Pr-1 atc iz the ceater

for r&Q(R), we have

N

4

O=r{u? 4 By w1+ 4 Bru+ Bo)
— (@h Byt e Brue - Bo)r
= (rBra = Brar)u o+ (rB1— Birdu+ (rBo— Bor).
I 7841~ Br 1770, then since Q(R) is simple, we have
QURY(rBi1— BB (R)=Q(R).
So there exist ,, I, -~ I, and )1, 1/ in Q(R) such
that

Z L(rBas—Brar)l =1
So we have
0:‘; z‘(rﬁk-lﬁ_ﬂqu)l:'uk_l—l_'"+-§ L (rBo—Bor)i, .

Therefore

0=u1+ o 4+ g + &
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with e & - e;; in Q(R). But thit is impossible by the
choice of 2. Hence r8,.,—8;.,7=0. Similarly 78 _,—Bs-2"
=0, -, and 78y~ By=0. Therefore rB,=6,r for every
r&Q(R) and i=0,1,---, 4—1. This means that

2 Bt - Blut B,=0
with 8,SZ(Q(R)),i=0,1, -, 2—1.

Now since F[u] is central in Rl«l, Flu] is a domain.
But since # is algebraic over F, F[u] is an algebraic
domain over the field F. So F{u] is a field. Consider the
canonical map ¢ from Q(R)RFLu] onto Q(R)[«]:

Q(R) Rp Flulo—Q(R) [u]
Zq{ ® alw‘qualo

Then since @(R) is a central simple F-algebra and Ffu]
is also simple F-algebra, Q(R)QF[u] is a simple F-
algebra by Therefore the nonzero map ¢ has the zero
kernel. Thus o is an isomorphism. So we have @(R)XpF (2]
=Q(R)[u]. Since F=Z(Q(R)) is the field of fractions of
Z(R), we have

akuk'}‘a&_luk‘l’}'"'+a1u+ao:o,
with ¢;&Z(R) and a, # 0 from the realtion

i By qut b+ Blu+ By=0.
Observe the ring R[a, !]. Since

wh=(a Va, w14+ (e, Va,

with @, 'e;&Rla, '], we have that Rla, '1{z] is a finitely
generated R[a, ']J-module by {1, %, ---,u*" '}, Of course in
the case @Q(R)[u]l=R[a,*][u]. Since dim Flul=4,
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Q(RYRFLlul =Q(R)[u5 is a free @(R)-module with basis
{1,u,---,u*1} by the standard tenssor product property.

Now finally let ¢SQ(R). Then g=Q(R)[u] =Rla, "1lu].
Then we have

q=a0+a1u + '“+ak_lﬂk-]

with a,ER[a; 11 C @(R). But since Q(R)fu] is free over
@(R) with basis {1, u, - ,#*?}, we have

0= (ay—q) ot + - 4oyt~

Hence ay—~¢=0, a;=-=da;.1=0. Thus ¢g=a«, is in Ria, 1],
So we have Q@(R)=R[a, '] completing our tedious proof.

For a PJ ring R, an ideal @ of R is called G-ideal if
Q=M N R for some maximal ideal M of R{x). A ring R is
called G-ring il 0 is G-ideal. By Lemma 2, we easily have
the following.

LeMmMa 3. A prime P/ ring R is G-ring if and only if
@(RYy=Riul for some u in @(Z(R)).

The following may already be well known but for com-
pleteness we colliect some characterizations of Hilberts rings,

ProrosSITION 4. Let R be PI ring. Then the {following
conditions are eguivalent.

(1) R is a Hilbert ring.

(2) Every maximal ideal A of R[2x], ANR is maximal
ideal of R.

(3) Every simple R{x}-module is finitely generated
R-module.

(4) Every G-ideal of R is maximal.
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Proor. (1) implies (2): Suppese R is a Hilbert ring.
For a maximal ideal 4 of R{x], ANR is a prime ideal of
R. Now by passing R to R/ANR, we may assume that
AMR=0 and Ris a prime P I ring. But since R is Hilbert,
so its homomorphic image R/ANR is Hilbert. So again
we may assume that R is a prime PI Hilbert ring. There-
fore R is semiprimitive and hence the intersection of
maximal ideals ,':] M, is zero. Since ANR=0, &R)=

Ria™] for some 0+# ¢ in Z(R) by Lemma 2.

Assume M, =0 for every a. Then since R is prime PJ.
M.NZ(R) #0 for every o by Rowen [5]. Take 0-%4., in
M. NZ(R). Then b,"'<@Q@(R)=R[a™]. So thereis a positive
integer n{et) such that &, '=c.,a ™ with c,=R. Therefore
a*=b., is in M, Since M. is a maximal ideal and a is
central, we have a3, for every . For, since a*&Ad,,
Ra™C M. Thus

Ra"»R=(RaR)---(RaR) T M,,

n(a)-times
But since M, is maximal, M, is prime and so RaR=aR
& M,, Thus a=M, for every «. Therefore a={) M,=0 is

a contradiction. So AM,=0 for some «. That is, 0 is a
maximal ideal of R and so R is a simple ring. In other
words, AR is a maximal ideal.

(2) implies (3): Let N be a simple R{xl-module. Then
there is a maximal right ideal I of R{x] such that
N=R[x]/I. In this case, we can choose a two-sided ideal
Iy of RLx] which is maximal with respect to the fact that
Iy is sitting inside /. Indeed [, is the right annihilator of
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N in R723. So [, is a primitive ideal of R[x] with N as
a faithful irreducible R[x]/J)-module. But since R{x] is
a PI ring, I; is a maximal ideal by Lemma 1. and obviously
it is nonzero. Furtheremore R[x]/f, is simple Artinian and
R{x]/I is isomorphic to a minimal right ideal which is of
course a direct summand of the ring R[x1/f,. Now by our
assamption (2}, RN/, is a maximal ideal and so we have
R[x]/'fg‘—‘ﬁix],/ﬁ;, where R=R/RNI, and I,=1,/(RNI)I=].
But since R is simple, R{x)/I,=Ri{zi/I, is finitely
generated as R module. So R[zx]/], is finitely generated
as R-module which shows (3) holds.

(3) impiies {3): Assunre that every RIz. module is a
finitely generated R-module. For a given prime ideal of R
by passing to its factor ring, we may assume that R is
prime P/, 1Inthis situation we need to show that the
intersection of maximal ideals (equivalently, primitive
ideals) is 0 from the definition of Hilbert ring.

Let {M.} be the set of all maximal ideals of R. Suppose
QM, #0. Then NM.Z(R) # 0. Take 0= a=NM,NZ(R).

Then {a*}z.. is an m-system with @ #0 for every 7,
because Z(R) is a commutative domain. Let P be an ideal
of R with PN{a"}z., =¢ and P is maximal with such pro-
perty. Then as we already noted, P is a prime ideal of
R. Of course the exstence of such P is assured by Zorn's
lemma. Let @ be the image of a in the factor ring R=R/P,
Then @ is in the center of R. Fora nonzero & in Z(R),
bR is a nonzero ideal of R. Now by the definition of P,
we have @*<hR for some positive integer k. Hence @'=5¢
with 2 in R and so EzE‘%"EQ(Z(R))ﬂR:Z(R). So b1
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= g "=R[a@']). Therefore R{@]=Q(R). So R is a G-
ring. Thus P is a G-ideal and hence P=AR for some
maximal ideal A of R[x]. So P is a maximal ideal of R.
Since a ¢ P, we have a&M, for some «. But this is a
contradiction since ac=Z(R)N NM, So Z(R)N NM.=0.
Thus we have T;]M.,z(). Hence R is a Hilbert ring.

(2) implies (4) and (4) implies (2): Obvious.

We recall that the pseudoradical of the ring R is the in-
tersection of all nonzero prime ideals of R. Now we are in
the situation to characterize Hilbert ring R{z] that the
coefficient ring R satisfies a polynomial identity.

THEOREM 5. Assume that X={x;} is a set of commuting
indeterminates of cardinality « over the PI ring R. Denote
by Z* the direct sum of o copiesof the additive group Z
of integers. Then the following conditions are equivalent.

(1) RIX7 is not a Hilbert ring.

(2) There exists a prime ideal P of R such that R/P
admist an o-generated extension ring that is 2 G-
ring but not a simple.

(3) The group ring R[Z°] is not a Hilbert ring.

Proor. (1) implies (2): Let R[X] be not a Hilbert ring.
Then there is G-ideal A of R[X] that is not maximal. So
there a maximalideal M of R[XJ[y] such that A=MnN
R[X1]. Since R isa PI ring, R{X1[y] is a Plring. Of
V={z+AlzcA}, then |V|< o and R[X]/A=(R/RNA)LV]
is G-ring because A is G-ideal clealy RNA is prime ideal
of R. Of P=RNA, then (R/P)[V]=R[X]/MNR[X]is an
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a-generated extension ring of R/P because x is the set of
commuting indeterminates. Since M R{X] is not maximal,
it is not simple.

(2) imples (3): Let D=R/P and let J=D{{a;},.;] be a-
generated extension of D that is a G-ring but not simple.
We will show that if 7" is a subring of D[{z;}, {x.,71}1=
Di{Z*] containing D[X], then T is not a Hilbert ring.
Since J is a G-ring, it has nonzero pseudoradical by gilmer
[2). Of J has a zero maximal ideal, then J is simple.
Thus the pseudoradical of J is contained in the intersection
of nonzero maximal ideal of J choose a nonzero element &
in the pseudoradical. Then, for each i, 1+ba, is invertible
in J because the pseudoradical of J is in Rad J by Lemma
1. So

DI{1+bai}, {(1+bai) 1} CJ.

The D-homomorphism of D[X]1=D[{x,}] onto D{{1l+ba,}]
determined by i—1+ba; and d——d forall d=D induces
a D-homomorphism ¢ of D[{z.}, {x,7'}=D[Z"°] onto

Dl {1+4ba;3, {(1+ba) 1}
and under & we have

J Do (TYD DI{1+ba}1=D{{ba}].
Now

JI6 11D o(T)6711 D D {ba,}, b 1]=Dl{a,}, b"]
=D[{a} b 1=J b 1 ]=Q(J)

Consequently,

JIb = (THYE1]1=Q(J).
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We claim that o(7) is not simple. To do this, if o(T)
is simple, then o(7T) is a simple PJ ring. Since the quo-
tient-ring of simple PrI is itself,

RQe(TH=0e(T)=J1]CJ
Hence

J=Jrb17=Q(J).

It means that J is simple and this contradicts the fact
that J is not simple. Therefore, o(7), and hence 7, is
not a Hilbert ring.

Finally, let T= D{{x,}, {x,'}1=DIZ"]. Then
a(TY=D[{l+bai}, {(L+bai)"}1C J

is not simple. Since

Qo (T =a(TH IS JI6 1 ]=Q(])

by Lemma 3, o(7T) is a G-ring. Now if ¢(7") is a Hilbert
ring, then so is its homomorphic image ¢(7) and zero is
maximal ideal of o(7'). Hence o{(7T) is simple. Therefore,
in particular T=D[Z2°], D[Z*] is not a Hilbert ring.

(3) implies (1): By Armendariz, Koo and Park (1L

An overring S of a ring R with the same identity is
called a finite centralizing extension of R if there is a finite
subset {u; u,---u,} of § such that S=uR+u,R+--+u,R
and n,r=ru, to all 1=1,2,.-.,7n and r&R. Schelter [6]
shows that every finite centralizing extension of a PI ring
R is an integral extensions. Also he proves that such
extensions enjoy Lying over, Going up and Incomparablity,
So for a finite centralizing extension S of R, S is Hilbert
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if and only if R is Hilbert, By the help of Theorem 5 we
can invesiigate monoid rings over P/ rings.

TororeMm 6. Let R be a PI 1ing, S be a cancellative
monoid of torsion-free rank o and G=SS"! be its quotient

group. The the following anditions are equivalent:

(1) Riz] is a Hilbert ring with |z|=o0.
{(2) R_G1 is a Hilbert ring,
(3) R.S] is a Hilbert ring.

Proor. For o we consider two cases:
Case 1. o 1s infinite.

(1) implies (2): Suppore that R{x] is a Hilbert ring.
Let H be the sub group of G generatedby a maximal free
subset { fil,e; of G=SS"% Then {J|=a and G/H is a
torsion abelian group. Let B=rg,+rg,+ - +r.g, be an
element of RIG1 with r,&R and g,&G, i=1,2,--,7. Con-
sider the subgroup If; generated by H and g; 82 &
Then Hy/H is finite and & is in R[H,]. Observing that
Ri{H,} is a finite centralizing extension of R[HI, R[H,]
is an intergral extension of R{H] by Schelter[6]. So b is
integral over R{H] and hence R[G] is integral over RTHT.
In fact, since R[H] is free abelian group of rank «,
H=Z. By Theorem, R[H] is a Hilbert ring. By applica-
tion of previous mentioned Schelter’s result, R[G]is a
Hiibert ring.

(2) implies(3): Suppore that R[S ] is not a Hilbert ring,
Since « is infinite, [S|=a. Observing that R[ST is a
epimorphic image of R[x] by sending x,—s, Since R[G]
is integral over R[CH 1, R{G] is Hilbert ring if and only if
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R[H] is Hilbert. By Theorem 5, R[X] is a Hilbert ring
because R{G] is a2 Hilbert ring. But this contradicts the
fact that R[.S] is not a Hilbert ring.

(8) implies (1): Let F={f.},csr bea maximal {free subset
of G. But since G=S8"! we may assume that F is a subset
of S. Let H be the subgroup of G generated by {fi}.c.
Then ofcause, H=2* and T=HNS is a free submonoid
of S. Pirst our claim is that R[.S] is integral over R[T .
For this argument, let 8=a,s,+a,5;+ -+ +a;s; be an element
of R{S] with a,&R and s,&8, i=1,2,--,& Then for each
s;, there is a positive integer 7, such that »s5&EH and so
n.s,&T. So if we denote T, as the submonoid generated
by 7 and 5,5, 5, then R[Tp] is a finite centralizing
extension of R[ 7] generated by finite centralizing elements
foysi o dmys il <m, <n, i=1,2,--k} over RIT . But
since B is in R[ 7,1, B is integral over R{T 1. In other
words, every element of R[S ] is integral over R[ 72, that
is R[S Jis an integral extension of R[(7T'].

Now for our proof that (3) implies (1), assume ‘o the
contrary that contrary that R[x] is not a Hilbert ring.
Then by Theorem 5, R[Z°] is not a Hilbert ring. By the
condition (2) in Theorem 5, there is a prime idesl D of
R such that the ring R/P admiis an o-generated extension
that is a G-ring but not simple. In this situation any ring
sitting between (R/P)Y[Zy*} and (R/P)CZ°] can not he
Hilbert, where Z,° denotes the monoid of nonnegative

intergers. Now since
(R/PYLZy IS (R/PYTIC (R/P)YLZ°],

(R/PY[T1 is not a Hilbert ring and hence R[7 is not
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a Hilbert ring. But as we already proved since R{S]
integral over R[{T ], R{S] is not a Hilbert ring, which is
a contradiction So So R[x] is Hilbert.

Case 2. a is finite

As in the proof of (3) impleis (1), still we can wverify
RIS 7] is integral over RTT ] when « is finite. Now since
T is a free submonoid and |F|=«, we have that R{T']
=RIX3. So we have RIX] is Hilbert if and only if
RIT1 is Hilbert if and only if R{ST is Hilbert. On the
other hand by Theorem 5, RTX ] is Hilbert if and only if
RIG]Y is Hilbert.
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