ON HILBERT SEMIGROUP RINGS*

CHOLON KIM

A ring R is called a Hilbert ring if every prime ideal of R is an intersection of primitive ideals. When R is commutative, Gilmer [3] shows that equivalent conditions for $R[\{x_i\}_{i\in I}]$ to be a Hilbert ring. But the weakness of his results is including commutativity.

In this paper, we shall discuss Hilbert semigroup ring with noncommutative coefficients rings. Actually, when S is a cancellative monoid and the coefficient ring R is a PI ring, the condition that the semigroup ring R[S] to be Hilbert will be observed. All monoid considered are assumed to be commutative.

We begin the following.

LEMMA I. Let R be a PI ring and P be an ideal of R. Then P is a primitive ideal if and only if P is a maximal ideal.

PROOF. Suppose P is a maximal ideal of R. Then the factor ring R/P is a simple ring. So it is primitive and

^{*} Research supported by Ministry of Education Grant 87~88.

therefore P is a primitive ideal.

Conversely, if P is a primitive ideal of R, then R/P is a primitive ring. Since R is PI, R/P is PI. Thus the factor ring R/P is a primitive PI ring and so it is simple by Kaplansky's Theorem [4].

We denote the center and the classical quotient ring of R by Z(R) and Q(R), respectively.

LEMMA 2. Let R be a prime PI ring and Q(R) the classical quotient ring of R. Then $Q(R) = R[a^{-1}]$ for some $0 \neq a$ in Z(R) if and only if $A \cap R = 0$ for some maximal A of R[x].

PROOF. Suppose $Q(R) = R[a^{-1}]$ with $0 \neq a \in Z(R)$. Then the map σ from R[x] to $R[a^{-1}]$ induced from the map sending x to a^{-1} is a ring epimorphism. Now since $Q(R) = R[a^{-1}]$ is simple Artinian, $A = \ker \sigma$ is a maximal ideal of R[x]. In this case $R[x]/A \cong R[a^{-1}] = Q(R)$ and $A \cap R = 0$ since the map sending r to r+A is one to one.

Conversely, assume that $A \cap R = 0$ for some maximal ideal A of R[x]. Let u = x + A in the ring R[x]/A. Then since $A \cap R = 0$, $R \subseteq R[u]$ and R[u] = R[x]/A is simple Artinian. So Q(R)[u] = R[u] = Q(R[u]). If u = 0, then R = R[x] is simple Artinian and so we are done. Hence we may assume that $u \neq 0$. Since u is a central element of the simple Artinian ring R[u], u is in the center of R[u]. But note that the center of a simple Artinian ring is a field. So u is invertible in R[u]. Actually $u^{-1} \in Z(R[u]) = Z(Q(R)[u])$. say

$$u^{-1} = \alpha_0 + \alpha_1 u + \dots + \alpha_n u^n$$

with α_0 , α_1 , ..., $\alpha_n \in Q(R)$ and $\alpha_n \neq 0$. But since Q(R) is simple, $Q(R)\alpha_nQ(R)=Q(R)$ and so there exist q_1 , q_1 , ..., q_s and q_1' , q_2' , ..., q_s' in Q(R) such that

$$\sum_{i=1}^{s} q_i \alpha_n q_i' = 1.$$

Thus $\sum_{i=1}^{s} q_i(\alpha_i u^{n+1} + \dots + \alpha_1 u^2 + \alpha_0 u - 1) q_i' = 0$. Therefore $\beta_0 + \beta_1 u + \dots + \beta_n u^n + u^{n+1} = 0$ with some $\beta_i \in Q(R)$. Now let k be the least positive integer such that

$$u^{k} + \beta_{k-1}u^{k-1} + \cdots + \beta_{1}u + \beta_{0} = 0$$

with $\beta_i \in Q(R)$, $i=0,1,\dots,k-1$. In this case our *claim* is that $\beta_0,\beta_1,\dots,\beta_{k-1}$ are in the center Z(Q(R)) of Q(R). Now for $r\in Q(R)$, we have

$$0 = r(u^{k} + \beta_{k-1}u^{k-1} + \dots + \beta_{1}u + \beta_{0})$$

$$- (u^{k} + \beta_{k-1}u^{k-1} + \dots + \beta_{1}u + \beta_{0})r$$

$$= (r\beta_{k-1} - \beta_{k-1}r)u^{k-1} + \dots + (r\beta_{1} - \beta_{1}r)u + (r\beta_{0} - \beta_{0}r).$$

If $r\beta_{k-1}-\beta_{k-1}r\neq 0$, then since Q(R) is simple, we have

$$Q(R)(r\beta_{k-1}-\beta_{k-1}r)Q(R)=Q(R).$$

So there exist l_1, l_2, \dots, l_n and l_1', l_2', \dots, l_n' in Q(R) such that

$$\sum_{i=1}^{n} l_{i}(r\beta_{k-1} - \beta_{k-1}r)l_{i}' = 1.$$

So we have

$$0 = \sum_{i=1}^{n} l_{i}(r\beta_{k-1}\beta - \beta_{k-1}r)l_{i}'u^{k-1} + \dots + \sum_{i=1}^{n} l_{i}(r\beta_{0} - \beta_{0}r)l_{i}'.$$

Therefore

$$0=u^{k-1}+\cdots+\varepsilon_1u+\varepsilon_0$$

with ε_0 , ε_1 , \cdots , ε_{k-1} in Q(R). But thit is impossible by the choice of k. Hence $r\beta_{k-1}-\beta_{k-1}r=0$. Similarly $r\beta_{k-2}-\beta_{k-2}r=0$, \cdots , and $r\beta_0-\beta_0r=0$. Therefore $r\beta_i=\beta_i r$ for every $r\in Q(R)$ and $i=0,1,\cdots,k-1$. This means that

$$u^{k} + \beta_{k-1}u^{k-1} + \dots + \beta_{1}u + \beta_{0} = 0$$

with
$$\beta_i \in Z(Q(R)), i=0,1,\dots,k-1$$
.

90

Now since F[u] is central in R[u], F[u] is a domain. But since u is algebraic over F, F[u] is an algebraic domain over the field F. So F[u] is a field. Consider the canonical map σ from $Q(R) \bigotimes_F F[u]$ onto Q(R)[u]:

$$Q(R) \otimes_{\mathbb{F}} F[u] \sigma \longrightarrow Q(R) [u]$$
$$\Sigma q_i \otimes a_i \longrightarrow \Sigma q_i a_i.$$

Then since Q(R) is a central simple F-algebra and F[u] is also simple F-algebra, $Q(R) \bigotimes_F F[u]$ is a simple F-algebra by Therefore the nonzero map σ has the zero kernel. Thus σ is an isomorphism. So we have $Q(R) \bigotimes_F F[u] \equiv Q(R)[u]$. Since F = Z(Q(R)) is the field of fractions of Z(R), we have

$$a_k u^k + a_{k-1} u^{k-1} + \cdots + a_1 u + a_0 = 0$$
,

with $a_i \in Z(R)$ and $a_k \neq 0$ from the realtion

$$u^{k} + \beta_{k-1}u^{k-1} + \cdots + \beta_{1}u + \beta_{0} = 0.$$

Observe the ring $R[a_k^{-1}]$. Since

$$u^{k} = (a_{k}^{-1})a_{k-1}u^{k-1} + \cdots + (a_{k}^{-1})a_{0}$$

with $a_k^{-1}a_i \in R[a_k^{-1}]$, we have that $R[a_k^{-1}][u]$ is a finitely generated $R[a_k^{-1}]$ -module by $\{1, u, \dots, u^{k-1}\}$. Of course in the case $Q(R)[u] = R[a_k^{-1}][u]$. Since dim $_FF[u] = k$,

 $Q(R) \bigotimes_F F[u] \equiv Q(R)[u]$ is a free Q(R)-module with basis $\{1, u, \dots, u^{k-1}\}$ by the standard tensor product property.

Now finally let $q \in Q(R)$. Then $q \in Q(R)[u] = R[a_k^{-1}][u]$. Then we have

$$q = \alpha_0 + \alpha_1 u + \dots + \alpha_{k-1} u^{k-1}$$

with $\alpha_1 \in R[a_k^{-1}] \subseteq Q(R)$. But since Q(R)[u] is free over Q(R) with basis $\{1, u, \dots, u^{k-1}\}$, we have

$$0 = (\alpha_0 - q) + \alpha_1 u + \dots + \alpha_{k-1} u^{k-1}.$$

Hence $\alpha_0 - q = 0$, $\alpha_1 = \dots = \alpha_{k-1} = 0$. Thus $q = \alpha_0$ is in $R[a_k^{-1}]$. So we have $Q(R) = R[a_k^{-1}]$ completing our tedious proof.

For a PI ring R, an ideal Q of R is called G-ideal if $Q=M\cap R$ for some maximal ideal M of R[x]. A ring R is called G-ring if 0 is G-ideal. By Lemma 2, we easily have the following.

LEMMA 3. A prime PI ring R is G-ring if and only if Q(R) = R[u] for some u in Q(Z(R)).

The following may already be well known but for completeness we collect some characterizations of Hilberts rings.

PROPOSITION 4. Let R be PI ring. Then the following conditions are equivalent.

- (1) R is a Hilbert ring.
- (2) Every maximal ideal A of R[x], $A \cap R$ is maximal ideal of R.
- (3) Every simple R[x]-module is finitely generated R-module.
- (4) Every G-ideal of R is maximal.

PROOF. (1) implies (2): Suppose R is a Hilbert ring. For a maximal ideal A of R[x], $A \cap R$ is a prime ideal of R. Now by passing R to $R/A \cap R$, we may assume that $A \cap R = 0$ and R is a prime P I ring. But since R is Hilbert, so its homomorphic image $R/A \cap R$ is Hilbert. So again we may assume that R is a prime PI Hilbert ring. Therefore R is semiprimitive and hence the intersection of maximal ideals $\bigcap_{\alpha} M_{\alpha}$ is zero. Since $A \cap R = 0$, $Q(R) = R[\alpha^{-1}]$ for some $0 \neq \alpha$ in Z(R) by Lemma 2.

Assume $M_{\alpha} \neq 0$ for every α . Then since R is prime PI_{α} $M_{\alpha} \cap Z(R) \neq 0$ for every α by Rowen [5]. Take $0 \neq b_{\alpha}$ in $M_{\alpha} \cap Z(R)$. Then $b_{\alpha}^{-1} \in Q(R) = R[\alpha^{-1}]$. So there is a positive integer $n(\alpha)$ such that $b_{\alpha}^{-1} = c_{\alpha} \alpha^{-n(\alpha)}$ with $c_{\alpha} \in R$. Therefore $a^{n(\alpha)} = b_{\alpha} c_{\alpha}$ is in M_{α} . Since M_{α} is a maximal ideal and a is central, we have $a \in M_{\alpha}$ for every α . For, since $a^{n(\alpha)} \in M_{\alpha}$, $Ra^{n(\alpha)} \subseteq M$. Thus

$$Ra^{n(a)}R = (RaR) \cdots (RaR) \subseteq M_a$$
.
 $n(\alpha)$ -times

But since M_{α} is maximal, M_{α} is prime and so RaR = aR $\subseteq M_{\alpha}$. Thus $a \in M_{\alpha}$ for every α . Therefore $a \in \bigcap_{\alpha} M_{\alpha} = 0$ is a contradiction. So $M_{\alpha} = 0$ for some α . That is, 0 is a maximal ideal of R and so R is a simple ring. In other words, $A \cap R$ is a maximal ideal.

(2) implies (3): Let N be a simple R[x]-module. Then there is a maximal right ideal I of R[x] such that N=R[x]/I. In this case, we can choose a two-sided ideal I_0 of R[x] which is maximal with respect to the fact that I_0 is sitting inside I. Indeed I_0 is the right annihilator of

N in R[x]. So I_0 is a primitive ideal of R[x] with N as a faithful irreducible $R[x]/I_0$ -module. But since R[x] is a PI ring, I_0 is a maximal ideal by Lemma 1. and obviously it is nonzero. Furtheremore $R[x]/I_0$ is simple Artinian and R[x]/I is isomorphic to a minimal right ideal which is of course a direct summand of the ring $R[x]/I_0$. Now by our assumption (2), $R \cap I_0$ is a maximal ideal and so we have $R[x]/I_0 = \overline{R}[x]/\overline{I}_0$, where $R = R/R \cap I_0$ and $I_0 = I_0/(R \cap I_0)[x]$. But since R is simple, $R[x]/I_0 = \overline{R}[x]/\overline{I}_0$ is finitely generated as R module. So $R[x]/I_0$ is finitely generated as R-module which shows (3) holds.

(3) implies (5): Assume that every R[x] module is a finitely generated R-module. For a given prime ideal of R by passing to its factor ring, we may assume that R is prime PI. In this situation we need to show that the intersection of maximal ideals (equivalently, primitive ideals) is 0 from the definition of Hilbert ring.

Let $\{M_a\}$ be the set of all maximal ideals of R. Suppose $\bigcap_r M_a \neq 0$. Then $\bigcap_r M_a Z(R) \neq 0$. Take $0 \neq a \in \bigcap_r M_a \cap Z(R)$. Then $\{a^n\}_{n=0}^{\infty}$ is an m-system with $a^n \neq 0$ for every i, because Z(R) is a commutative domain. Let P be an ideal of R with $P \cap \{a^n\}_{n=0}^{\infty} = \phi$ and P is maximal with such property. Then as we already noted, P is a prime ideal of R. Of course the exstence of such P is assured by Zorn's lemma. Let \bar{a} be the image of a in the factor ring R = R/P. Then \bar{a} is in the center of R. For a nonzero \bar{b} in Z(R), $\bar{b}R$ is a nonzero ideal of R. Now by the definition of P, we have $\bar{a}^k \in \bar{b}R$ for some positive integer k. Hence $\bar{a}^k = \bar{b}\bar{c}$ with \bar{c} in R and so $\bar{c} = \bar{b}^{-1}\bar{a}^k \in Q(Z(R)) \cap R = Z(R)$. So \bar{b}^{-1}

 $= \bar{a}^{-n} \in R[\bar{a}^{-1}]$. Therefore $R[\bar{a}^{-1}] = Q(R)$. So R is a G-ring. Thus P is a G-ideal and hence $P = A \cap R$ for some maximal ideal A of R[x]. So P is a maximal ideal of R. Since $a \notin P$, we have $a \notin M_a$ for some α . But this is a contradiction since $a \in Z(R) \cap \bigcap M_a$. So $Z(R) \cap \bigcap M_a = 0$. Thus we have $\bigcap M_a = 0$. Hence R is a Hilbert ring.

(2) implies (4) and (4) implies (2): Obvious.

We recall that the pseudoradical of the ring R is the intersection of all nonzero prime ideals of R. Now we are in the situation to characterize Hilbert ring R[x] that the coefficient ring R satisfies a polynomial identity.

THEOREM 5. Assume that $X=\{x_i\}$ is a set of commuting indeterminates of cardinality α over the PI ring R. Denote by Z^* the direct sum of α copies of the additive group Z of integers. Then the following conditions are equivalent.

- (1) R[X] is not a Hilbert ring.
- (2) There exists a prime ideal P of R such that R/P admist an α -generated extension ring that is a G-ring but not a simple.
- (3) The group ring $R[Z^a]$ is not a Hilbert ring.

PROOF. (1) implies (2): Let R[X] be not a Hilbert ring. Then there is G-ideal A of R[X] that is not maximal. So there a maximalideal M of R[X][y] such that $A=M\cap R[X]$. Since R is a PI ring, R[X][y] is a PI ring. Of $V=\{x+A|x\in A\}$, then $|V|\leq \alpha$ and $R[X]/A=(R/R\cap A)[V]$ is G-ring because A is G-ideal clealy $R\cap A$ is prime ideal of R. Of $P=R\cap A$, then $(R/P)[V]=R[X]/M\cap R[X]$ is an

 α -generated extension ring of R/P because x is the set of commuting indeterminates. Since $M \cap R[X]$ is not maximal, it is not simple.

(2) imples (3): Let D=R/P and let $J=D[\{a_i\}_{i\in I}]$ be α -generated extension of D that is a G-ring but not simple. We will show that if T is a subring of $D[\{x_i\}, \{x_i^{-1}\}] \cong D[Z'']$ containing D[X], then T is not a Hilbert ring. Since J is a G-ring, it has nonzero pseudoradical by gilmer [2]. Of J has a zero maximal ideal, then J is simple. Thus the pseudoradical of J is contained in the intersection of nonzero maximal ideal of J choose a nonzero element b in the pseudoradical. Then, for each i, 1+ba, is invertible in J because the pseudoradical of J is in Rad J by Lemma 1. So

$$D[\{1+bai\}, \{(1+bai)^{-1}\}] \subseteq J.$$

The *D*-homomorphism of $D[X] = D[\{x_i\}]$ onto $D[\{1+ba_i\}]$ determined by $i \longrightarrow 1+ba_i$ and $d \longrightarrow d$ for all $d \in D$ induces a *D*-homomorphism σ of $D[\{x_i\}, \{x_i^{-1}\} = D[Z^a]$ onto

$$D[\{1+ba_i\}, \{(1+ba_i)^{-1}\}]$$

and under o we have

$$J \supseteq \sigma(T) \supseteq D[\{1+ba_i\}] = D[\{ba_i\}].$$

Now

$$J[b^{-1}] \supseteq \sigma(T)[b^{-1}] \supseteq D[\{ba_i\}, b^{-1}] = D[\{a_i\}, b^{-1}]$$
$$= D[\{a_i\}][b^{-1}] = J[b^{-1}] = Q(J)$$

Consequently,

$$J[b^{-1}] = \sigma(T)[b^{-1}] = Q(J).$$

We claim that $\sigma(T)$ is not simple. To do this, if $\sigma(T)$ is simple, then $\sigma(T)$ is a simple PI ring. Since the quotient ring of simple PI is itself,

$$Q(\sigma(T)) = \sigma(T) = J[b^{-1}] \subseteq J$$

Hence

$$J=J \lceil b^{-1} \rceil = Q(J)$$
.

It means that J is simple and this contradicts the fact that J is not simple. Therefore, $\sigma(T)$, and hence T, is not a Hilbert ring.

Finally, let
$$T = D[\{x_i\}, \{x_i^{-1}\}] = D[Z^a]$$
. Then $\sigma(T) = D[\{1+bai\}, \{(1+bai)^{-1}\}] \subseteq J$

is not simple. Since

$$Q(\sigma(T)) = \sigma(T)[b^{-1}] \subseteq J[b^{-1}] = Q(J)$$

by Lemma 3, $\sigma(T)$ is a G-ring. Now if $\sigma(T)$ is a Hilbert ring, then so is its homomorphic image $\sigma(T)$ and zero is maximal ideal of $\sigma(T)$. Hence $\sigma(T)$ is simple. Therefore, in particular $T=D[Z^{\sigma}]$, $D[Z^{\sigma}]$ is not a Hilbert ring.

(3) implies (1): By Armendariz, Koo and Park [1].

An overring S of a ring R with the same identity is called a *finite centralizing extension* of R if there is a finite subset $\{u_1, u_2, \dots u_n\}$ of S such that $S = u_1R + u_2R + \dots + u_nR$ and n,r = ru, to all $i = 1, 2, \dots, n$ and $r \in R$. Schelter [6] shows that every finite centralizing extension of a PI ring R is an integral extensions. Also he proves that such extensions enjoy Lying over, Going up and Incomparability. So for a finite centralizing extension S of R, S is Hilbert

if and only if R is Hilbert. By the help of Theorem 5 we can investigate monoid rings over PI rings.

THEOREM 6. Let R be a PI ring, S be a cancellative monoid of torsion-free rank α and $G=SS^{-1}$ be its quotient group. The the following anditions are equivalent:

- (1) R[x] is a Hilbert ring with $|x| = \alpha$.
- (2) R[G] is a Hilbert ring.
- (3) R[S] is a Hilbert ring.

PROOF. For α we consider two cases:

Case 1. α is infinite.

- (1) implies (2): Suppore that R[x] is a Hilbert ring. Let H be the sub group of G generated by a maximal free subset $\{f_i\}_{i\in I}$ of $G=SS^{-1}$. Then $|I|=\alpha$ and G/H is a torsion abelian group. Let $\beta=r_1g_1+r_2g_2+\cdots+r_rg_n$ be an element of R[G] with $r_i\in R$ and $g_i\in G$, $i=1,2,\cdots,n$. Consider the subgroup H_0 generated by H and g_1,g_2,\cdots,g_n . Then H_0/H is finite and b is in $R[H_0]$. Observing that $R[H_0]$ is a finite centralizing extension of R[H], $R[H_0]$ is an integral extension of R[H] by Schelter[6]. So b is integral over R[H] and hence R[G] is integral over R[H]. In fact, since R[H] is free abelian group of rank α , $H\cong Z_a$. By Theorem, R[H] is a Hilbert ring. By application of previous mentioned Schelter's result, R[G] is a Hilbert ring.
- (2) implies(3): Suppore that R[S] is not a Hilbert ring. Since α is infinite, $|S| = \alpha$. Observing that R[S] is a epimorphic image of R[x] by sending $x_i \rightarrow s_i$. Since R[G] is integral over R[H], R[G] is Hilbert ring if and only if

R[H] is Hilbert. By Theorem 5, R[X] is a Hilbert ring because R[G] is a Hilbert ring. But this contradicts the fact that R[S] is not a Hilbert ring.

(3) implies (1): Let $F = \{f_i\}_{i \in I}$ be maximal free subset of G. But since $G = SS^{-1}$ we may assume that F is a subset of S. Let H be the subgroup of G generated by $\{f_i\}_{i \in I}$. Then of cause, $H \cong Z^a$ and $T = H \cap S$ is a free submonoid of S. First our claim is that R[S] is integral over R[T]. For this argument, let $\beta = a_1s_1 + a_2s_2 + \cdots + a_ks_k$ be an element of R[S] with $a_i \in R$ and $s_i \in S$, $i = 1, 2, \dots, k$. Then for each s_i , there is a positive integer n_i such that $n_i s_i \in H$ and so $n_i s_i \in T$. So if we denote T_0 as the submonoid generated by T and s_1, s_2, \cdots, s_k , then $R[T_0]$ is a finite centralizing extension of R[T] generated by finite centralizing elements $\{m_1 s_1 + \cdots + m_k s_k | 1 \le m_i \le n_i, i = 1, 2, \cdots k\}$ over R[T]. But since β is in $R[T_0]$, β is integral over R[T]. In other words, every element of R[S] is integral over R[T], that is R[S] is an integral extension of R[T].

Now for our proof that (3) implies (1), assume to the contrary that contrary that R[x] is not a Hilbert ring. Then by Theorem 5, $R[Z^a]$ is not a Hilbert ring. By the condition (2) in Theorem 5, there is a prime ideal P of R such that the ring R/P admits an α -generated extension that is a G-ring but not simple. In this situation any ring sitting between $(R/P)[Z_0^a]$ and $(R/P)[Z^a]$ can not be Hilbert, where Z_0^a denotes the monoid of nonnegative intergers. Now since

$$(R/P)[Z_0^a]\subseteq (R/P)[T]\subseteq (R/P)[Z^a],$$

(R/P)[T] is not a Hilbert ring and hence R[T] is not

a Hilbert ring. But as we already proved since R[S] integral over R[T], R[S] is not a Hilbert ring, which is a contradiction So So R[x] is Hilbert.

Case 2. α is finite

As in the proof of (3) impleis (1), still we can verify R[S] is integral over R[T] when α is finite. Now since T is a free submonoid and $|F| = \alpha$, we have that R[T] = R[X]. So we have R[X] is Hilbert if and only if R[T] is Hilbert if and only if R[T] is Hilbert if and only if R[S] is Hilbert. On the other hand by Theorem 5, R[X] is Hilbert if and only if R[G] is Hilbert.

References

- 1. E.P. Armendariz, H.K. Koo and J.K. Park, Jacobson Rings with a polynomial identities, to appear in Conom in Algebra.
- R. Gilmer, The pseudoradical of a acommutative ring. Pacific J. Math. 19(1966), 275-284.
- 3. _____, Commutative monoid sings as Hilbert Rings, Proc. Amer. Math. Soc. 94(1985), 15-18.
- D.S. Passman, "The Algebraic Structure of Group Rings", Wiley, New York, 1977.
- L.H. Rowen, "Polynomial identities in Ring Theory", Acad. Press, New York, 1980.
- W. Schelter, Integral extension of rings satisfying a polynomial identity, J. Algebra 40(1976) 245-257.

Pusan National University Pusan 609-735 Korea

Received January 10, 1988.