SOME PROPERTIES OF COMPLETELY POSITIVE MAP

An Hyun Kim

1. Introduction

In [1], Arveson stated that the correspondence between commutant of $\bar{\pi}(a)$ and the set of completely positive maps is an affine order isomorphism. This note states that the extension of B-valued inner product can not be carried out for even the simplest sort of pre-Hilbert B-module unless B is at least an AW^* -algebra [Theorem 2.9].

In § 3, in addition to Arveson's statements, it is also given that the correspondence preserves convex combinations [Theorem 3.5] and an equivalence condition for completely positive map [Theorem 3.6].

2. Preliminaries

DEFINITION 2.1. Let B be a C^* -algebra. A pre-Hilbert B-module is a right B-module X equipped with a conjugate bilinear map $\langle , \rangle : X \times X \longrightarrow B$ satisfying:

- (i) $\langle x, x \rangle \ge 0 \quad \forall x \in X$;
- (ii) $\langle x, x \rangle = 0$ only if x = 0;
- (iii) $\langle x, y \rangle = \langle y, x \rangle^*$ for $x, y \in X$;
- (iv) $\langle x \cdot b, y \rangle = \langle x, y \rangle b$ for $x, y \in X$, $b \in B$.

The map \langle , \rangle will be called a B-valued inner product on X.

EXAMPLE 2.2. If J is a right ideal of B, then J becomes a pre-Hibert B-module when we define \langle , \rangle by $\langle x, y \rangle = y^*x$ for $x, y \in J$.

For a pre-Hilbert B-module X, define $||\cdot||_X$ on X by $||x||_X = ||\langle x, x \rangle||^{\frac{1}{2}}$.

Proposition 2.3. $||\cdot||_X$ is a norm on X and satisfies:

- (i) $||x \cdot b||_X \le ||x||_X ||b||$ for $x \in X, b \in B$;
- (ii) $\langle x, y \rangle^* \langle x, y \rangle \le ||y||^2 \langle x, x \rangle$ for $x, y \in X$;
- (iii) $||\langle x, y \rangle|| \le ||x||_X ||y||_X$ for $x, y \in X$.

Proof. [5], [8].

DEFINITION 2.4. A pre-Hilbert B-module X which is complete with respect to $||\cdot||_X$ will be called a *Hilbert B-module*.

REMARK 2.5. For a pre-Hilbert B-module X, we let $\mathcal{O}(X)$ denote the set of operators $T \in B(X)$ for which there is an operator $T *\in B(X)$ such that $\langle Tx, y \rangle = \langle x, T * y \rangle$ for $x, y \in X$. That is $\mathcal{O}(X)$ is the set of bounded operators on X which possess bounded adjoint with respect to the B-valued inner product. It is easy to see that for $T \in \mathcal{O}(X)$, the adjoint T * is unique and belongs to $\mathcal{O}(X)$, so $\mathcal{O}(X)$ is a *-algebra with involution $T \to T *$.

LEMMA 2.6. $\mathcal{O}(X)$ consists of entirely module maps. i.e. if $T \in \mathcal{O}(X)$, then $T(x \cdot b) = (Tx) \cdot b$ for $x \in X$, $b \in B$. PROOF. Take $y \in X$. Then by properties of B-valued inner product,

$$\langle T(x \cdot b), y \rangle = \langle x \cdot b, T * y \rangle$$

= $\langle x, T * y \rangle b$
= $\langle Tx, y \rangle b = \langle (Tx) \cdot b, y \rangle$.

For the balance of this section, A will be a C^* -algebra, B a closed *-subalgebra of A, X a pre-Hilbert B-module, and Y a pre-Hilbert A-module.

LEMMA 2.7. For a linear map $T: X \longrightarrow Y$ the followings are equivalent:

- (i) T is a bounded module map of B.
- (ii) There is a real $K \ge 0$ such that $\langle Tx, Tx \rangle_A \le K \langle x, x \rangle_B$ for $x \in X$.

Proof. [1], [5].

We let X' denote the set of bounded B-module maps of X into B. By 2.7(with A=B=Y), X' is precisely the set of linear maps $\tau: X \longrightarrow B$ for which there is a real $K \ge 0$ such that $\tau(x)^* \tau(x) \le K\langle x, x\rangle$ for $x \in X$. Each $x \in X$ gives rise to a map $\hat{x} \in X'$ defined by $\hat{x}(y) = \langle y, x\rangle$ for $y \in X$. We will call X self-dual if $\hat{X} = X'$. According to [5, p.451], X' is a pre-Hilbert B-module, that is, $\langle \ , \ \rangle$ can be extended to a B-valued inner product on X' and the extension satisfies $\langle \hat{x}, \tau \rangle = \tau(x)$ for $x \in X$ and $\tau \in X'$.

THEOREM 2.8. Let X and Y be pre-Hilbert A-modules and $T: X \longrightarrow Y$ a bounded module map. Then (i) There exists a bounded module map $\tilde{T}: X' \longrightarrow Y'$ (ii) $(\tilde{T}\hat{x})(y) = (Tx)(y)$ for $x \in X$ and $y \in Y$.

PROOF. (i) Define $T^*: Y \longrightarrow X'$ by $(T^*y)(x) = \langle Tx, y \rangle$

for $y \in X$, $x \in X$. By Schwarz's inequality $||(T^*y)(x)|| \le ||T||||x||||y||$, so T^* is bounded. Also since

$$(T^*(y \cdot b))(x) = \langle Tx, y \cdot b \rangle = \langle y \cdot b, Tx \rangle^*$$

= $(\langle y, Tx \rangle b)^* = b^* \langle y, Tx \rangle^*$
= $b^* \langle Tx, y \rangle = ((T^*y) \cdot b)(x),$

 $T^{\#}$ is a bounded module map.

Define $\tilde{T}: X' \longrightarrow Y'$ by $(\tilde{T}\tau)(y) = \langle T^*y, \tau \rangle$ for $y \in Y$, $\tau \in X'$. Since \tilde{T} is just $(T^*)^*$, \tilde{T} is a bounded module map also.

(ii) From the following observation, (ii) is immediate. That is, for $x \in X$, $y \in Y$,

$$(\tilde{T}\hat{x})(y) = \langle T^*y, \hat{x} \rangle = \langle \hat{x}, T^*y \rangle^*$$

$$= \langle (T^*y)(x) \rangle^* = \langle Tx, y \rangle^*$$

$$= \langle y, Tx \rangle = (Tx)(y).$$

THEOREM 2.9. Let B be a C^* -algebra with the property that for every right ideal J of B, there is a B-valued inner product \langle , \rangle on J' satisfying $\langle \hat{x}, \tau \rangle = \tau(x)$ for all $x \in J$, $\tau \in J'$. Then B is an AW^* -algebra.

PROOF. Let J be a right ideal of B. For $a \in B$, define $\tilde{a} \in J'$ by $\tilde{a}(x) = a*x \ (x \in J)$ and let $\tau_i \in J'$ denote the inclusion of J into B. Notice $\tau_i \cdot a = \tilde{a}$ for $a \in B$ and that $\tilde{x} = \hat{x}$ for $x \in J$.

Put $q = \langle \tau_i, \tau_i \rangle$. Then $q = q^*$ and $x \in J$, $qx = \tilde{q}(x)$. By the way,

$$\tilde{q}(x) = \langle \tau_i \cdot x, \tau_i \rangle = \langle \tilde{x}, \tau_i \rangle
= \langle \hat{x}, \tau_i \rangle = \tau_i(x) = x.$$

So we have

$$q^{2} = \langle \tau_{i} \cdot q, \tau_{i} \rangle = \langle \tilde{q}, \tau_{i} \rangle$$
$$= \langle \tau_{i}, \tau_{i} \rangle = q,$$

i.e., q is a projection. Put p=1-q, so p is a projection in L(J), where L(J) is the left annihilator of J. For self-adjoint element a of L(J), we have $\tilde{a}=0$, so

$$qa = \langle \tau_i \cdot a, \tau_i \rangle$$
$$= \langle \tilde{a}, \tau_i \rangle = 0,$$

which shows that ap=a for all $a \in L(J)$. That is, L(J) is a principal ideal generated by some projection p.

3. Completely positive maps

DEFINITION 3.1. Let B be a C^* -algebra, A a *-algebra and $\phi: A \longrightarrow B$ a linear map. We call ϕ positive if $\phi(a^*a) \geq 0 \ \forall a \in A$.

For $n=1,2,\cdots$, ϕ induces a map ϕ_n from algebra $A_{(n)}$ of $n \times n$ matrices with entries in A(made into a *-algebra by setting $[a_{i,j}]^* = [a_{i,j}^*]$ for matrices $[a_{i,j}] \in A_{(n)}$) into the corresponding C^* -algebra $B_{(n)}$ defined by $\phi_n([a_{i,j}]) = [\phi(a_{i,j})]$; we say that ϕ is completely positive if each of the induced map ϕ_n is positive.

REMARK 3.2. According to [7, p. 194], a linear map $\phi: A \longrightarrow B$ is completely positive if and only if

$$\sum_{i,j} b_i * \phi(a_i * a_j) b_j \ge 0 \text{ for } a_1, \dots, a_n \in A, b_1, \dots, b_n \in B.$$

Let ϕ be a completely positive and suppose in addition that $\phi(a^*) = \phi(a)^*$ for $a \in A$. The map ϕ give rise to a pre-Hilbert B-module as follows: consider the algebraic

tensor product $A \otimes B$, which becomes a right B-module when we set $(a \otimes b) \cdot \beta = a \otimes b\beta$ for $b, \beta \in B$, $a \in A$.

Define

$$[,] : (A \otimes B) \times (A \otimes B) \longrightarrow B$$

$$\left(\sum_{j=1}^{n} a_{j} \otimes b_{j}, \sum_{i=1}^{m} \alpha_{i} \otimes \beta_{i} \right) \longrightarrow \left[\sum_{j=1}^{n} a_{j} \otimes b_{j}, \sum_{i=1}^{m} \alpha_{i} \otimes B_{i} \right]$$

$$= \sum_{i=1}^{n} \beta_{i} * \phi(\alpha_{i} * a_{j}) b_{j},$$

for $a_1, \dots a_n, \alpha_1, \dots, \alpha_m \in A$, $b_1 \dots b_n, \beta_1, \dots, \beta_m \in B$.

[,] is clearly well-defined and conjugate-bilinear. Since ϕ is completely positive, for with $x \in A \otimes B$, $[x, x] \geq 0$, since ϕ is *-map, [x, y] = [y, x]*, and $[x \cdot b, y] = [x, y]b$ for $x, y \in A \otimes B$ and $b \in B$. Put

$$N = \{x \in A \otimes B : [x, x] = 0\}.$$

Then N is a submodule of $A \otimes B$ and $X_0 = A \otimes B/N$ is a pre-Hilbert B-module with B-valued inner product

$$\langle x+N, y+N \rangle = [x,y] \text{ for } x,y \in A \otimes B.$$

Following T.W. Palmer [3], we call an element v of the *-algebra A quasi-unitary if $vv^*=v^*v=v+v^*$ and say that A is a U^* -algebra if it is the linear span by its quasi-unitary elements. All Banach *-algebras are U^* -algebra and A is a U^* -algebra iff it is spanned by its unitaries [3].

THEOREM 3.3. Let A be a U^* -algebra with 1, B a C^* -algebra with 1, and $\phi: A \longrightarrow B$ a completely positive map. Then

(i) there is a Hilbert B-module X, a *-representation π of A on X, and an element $e \in X$ such that $\phi(a) = \langle \pi(a)e, e \rangle$ for $a \in A$.

(ii) the set $\{\pi(a)(c \cdot b) : a \in A, b \in B\}$ spans a dense subspace of X.

PROOF. [5], [6], [7]. In particular, note that $\pi(a)(x+N) = a \cdot x + N$ $\forall x \in A \otimes B$ and $\pi(a) \in Ol(X)$ (i.e., $\pi(a)$ is a B-module map), X a completion of X_0 .

Let A be a U^* -algebra with 1, and B a C^* -algebra. If X, π and $e(e=1\otimes 1+N)$ are as in 3.3, we may define a *-representation π of A on the self-dual Hilbert B-module X' by $\tilde{\pi}(a) = \pi(a)^* \in ot(X')$ for $a \in A$. Suppose $\phi: A \longrightarrow B$ is another completely positive map. We write $\phi \leq \phi$ if $\phi - \phi$ is completely positive and let $[0, \phi]$ denote the set of completely positive maps from A into B which are $\leq \phi$.

For $T \in \mathcal{O}(X')$, define $\phi_T : A \longrightarrow B$ by $\phi_T(a) = \langle T\tilde{\pi}(a)\hat{e}, \hat{e} \rangle$. Notice that $\phi_T = \phi$ and that the map $T \longrightarrow \phi_T$ is a linear map of $\mathcal{O}(X')$ into the space of linear transformations of A into B, also that X' becomes a right B-module if we set $(\tau \cdot b)(x) = b * \tau(x)$ for $\tau \in X'$, $b \in B$, $x \in X$.

LEMMA 3.4. Let A be a C*-algebra with 1 and let $a \in A$, $a \ge 0$. Then there exists a unique element $b \in A$ such that $b \ge 0$ and $b^2 = a$.

PROOF. [2], [7].

THEOREM 3.5. Under the above circumstances,

- (i) for each $T \in \tilde{\pi}(A)'$ with $0 \le T \le I_{X'}$, the formula $\phi_T(a) = \langle T\tilde{\pi}(a)\hat{e}, \hat{e} \rangle$ defines a completely positive map such that $\phi_T \le \phi$;
- (ii) the correspondence $T \longrightarrow \phi_T$ described in (i) is a bijection of $\{T \in \bar{\pi}(A)' : 0 \le T \le I_{X'}\}$ onto $[0, \phi]$;
- (iii) the correspondence preserves convex combinations,

where $\tilde{\pi}(A)'$ denotes the commutant of $\pi(A)$ in $\mathcal{O}(X')$.

PROOF. (i) For $a_1, \dots, a_n \in A$ and $b_1, \dots, b_n \in B$, set $x = \sum_{j=1}^n \pi(a_j)(e \cdot b_j) \in X$ (by 3.3, this is possible). Then

$$\sum_{i,j} b_i * \phi_T(a_i * a_j) b_j = \sum_{i,j} b_i * \langle T\tilde{\pi}(a_i * a_j)\hat{e}, \hat{e} \rangle b_j$$

$$= \sum_i \langle T\tilde{\pi}(a_i * a_j)\hat{e} \cdot b_j, \hat{e} \cdot b_i \rangle$$

$$= \sum_i \langle T\tilde{\pi}(a_j)\hat{e} \cdot b_j, \tilde{\pi}(a_i)\hat{e} \cdot b_i \rangle$$

$$(\text{since } T \in \tilde{\pi}(A)')$$

$$= \langle T(\sum_i \tilde{\pi}(a_j)\hat{e} \cdot b_j), \sum_i \tilde{\pi}(a_i)\hat{e} \cdot b_i \rangle$$

$$= \langle T\sum_i \tilde{\pi}(a_j)(e \cdot b_j)^{\wedge}, \sum_i \tilde{\pi}(a_i)(e \cdot b_i)^{\wedge} \rangle$$

$$(\text{by the above notice})$$

$$= \langle T(\sum_i \tilde{\pi}(a_j)(e \cdot b_j))^{\wedge}, (\sum_i \pi(a_i)(e \cdot b_i))^{\wedge} \rangle$$

$$(\text{by 2.8})$$

$$= \langle T\hat{x}, \hat{x} \rangle$$

$$= \langle T^{\frac{1}{2}}\hat{x}, T^{\frac{1}{2}}\hat{x} \rangle > 0 \text{ (by 3.4)}.$$

Thus ϕ_T is completely prositive. But $\phi_T \leq \phi$ is to be shown in (ii).

(ii): If
$$T \in \tilde{\pi}(A)'$$
 and $\phi_T = 0$, then $\langle T(\pi(a_1)(e \cdot b))^{\wedge}, (\pi(a_2)(e \cdot b))^{\wedge} \rangle$

$$= \langle T\tilde{\pi}(a_1)(e \cdot b_1)^{\wedge}, \tilde{\pi}(a_2)(e \cdot b)^{\wedge} \rangle$$

$$= \langle T\tilde{\pi}(a_2 * a_1)(e \cdot b_1)^{\wedge}, (e \cdot b_2)^{\wedge} \rangle$$

$$= \langle T\tilde{\pi}(a_2 * a_1)\hat{e} \cdot b_1, \hat{e} \cdot b_2 \rangle$$

$$= b_2 * \langle T\tilde{\pi}(a_2 * a_1)\hat{e}, \hat{e} \rangle b_1$$

$$= b_2 * \phi_T(a_2 * a_1)b_1 = 0$$

for $a_1, a_2 \in A$, $b_1, b_2 \in B$.

So $\langle T(\hat{X}_0), X_0 \rangle = 0$, or $\langle T(X), X \rangle = 0$; hence T=0 by 2.8. Thus the correspondence is one-one.

To show that the conespondence is onto, take $\phi \in [0, \phi]$. By 3.3 there exists a *-representation ρ of A on a Hilbert

B-module Y and a $d \in Y$ such that $\psi(a) = \langle \rho(a)d, d \rangle$ for $a \in A$ and the set $\{\rho(a)(d \cdot b) : a \in A, b \in B\}$ spans a dense subspace Y_0 of Y. Since $\psi \leq \phi$, there is a well-defined bounded module map $W: X_0 \to Y_0$ such that $W(\pi(a)(e \cdot b)) = \rho(a)(d \cdot b)$ for $a \in A$, $b \in B$ and $\langle w_x, w_x \rangle \leq \langle x, x \rangle$ for $x \in X_0$. W extends to a bounded module map $W: X \longrightarrow Y$. Also

$$egin{aligned} W\pi(a)(\pi(a)(e\cdot b)) &= w\pi(a)(a \otimes b + N) \ &= w(a^2 \otimes b + N) \ &=
ho(a^2)(d\cdot b) \ &=
ho(a)\,
ho(a)(d\cdot b) =
ho(a)\,W(\pi(a)(e\cdot b)), \end{aligned}$$

i.e., $W\pi(a)$ and $\rho(a)w$ agree on X_0 for $a \in A$. Hence $W\pi(a) = \rho(a)W$ for $a \in A$. By 2.8, we get a bounded module map $\tilde{W}: X' \longrightarrow Y'$ extending W. It is clear from the proof of 2.8 that

$$\langle \tilde{W}\tau, \tilde{W}\tau \rangle \leq \langle \tau, \tau \rangle \text{ for } \tau \in X'.$$

Let $\tilde{W}^*: Y' \longrightarrow X'$ be the adjoint of \tilde{W} and put $T = \tilde{W}^*W$, so $T \in \mathcal{O}(X')$ and $T = T^*$. For $\tau \in X'$, we have $\langle T\tau, \tau \rangle = \langle \tilde{W}\tau, \tilde{W}\tau \rangle \leq \langle \tau, \tau \rangle$, so $0 \leq \langle T\tau, \tau \rangle \leq \langle \tau, \tau \rangle$, hence $0 \leq T \leq I$. Since $\tilde{W}\tilde{\pi}(a) = \tilde{\rho}(a)\tilde{W}$, $\tilde{W}(a)\tilde{W}^* = \tilde{W}^*\tilde{\rho}(a)$ for $a \in A$. Hence for any $a \in A$, we have

$$T\tilde{\pi}(a) = \tilde{W}^*\tilde{W}\tilde{\pi}(a)$$

= $\tilde{W}^*\tilde{\rho}(a)\tilde{W}$
= $\tilde{\pi}(a)\tilde{W}^*\tilde{W} = \tilde{\pi}(a)T$, i.e., $T \in \tilde{\pi}(A)'$.

Finally, for $a \in A$,

$$egin{aligned} \phi_{T}(a) &= \langle T ilde{\pi}(a) \hat{e}, \hat{e} \rangle = \langle ilde{W} ilde{\pi}(a) \hat{e}, ilde{W} \hat{e}
angle \ &= \langle W \pi(a) e, W e
angle \ &= \langle
ho(a) d, d
angle = \phi(a). \end{aligned}$$

These complete the proof of (i) and (ii).

(iii) The set $K = \{T \in \tilde{\pi}(A)' : 0 \le T \le I_{X'}\}$ is obviously convex; so is $[0, \phi]$. If $S, T \in K$ and $0 \le \lambda \le 1$, and $R = \lambda S + (1-\lambda)T$, then for $a \in A$,

$$\phi_R(a) = \phi(a)\phi_{\lambda S+(1-\lambda)T}(a)$$

$$= \langle (\lambda S+(1-\lambda)T)\tilde{\pi}(a)\hat{e}, \hat{e} \rangle$$

$$= \lambda \phi_S(a)+(1-\lambda)\phi_T(a),$$

i.e., $\phi_{\lambda S+(1-\lambda)T} = \lambda \phi_S + (1-\lambda)\phi_T$.

Thus the correspondence preserves convex combinations.

THEOREM 3.6. A completely positive map ψ on A satisfies $\psi \leq \phi$ if and only if there exists an operator $T \in \mathcal{O}(X')$ such that $0 \leq T \leq I_{X'}$, $T\tilde{\pi}(a) = \tilde{\pi}(a)T$ for all $a \in A$, and $\psi(a) = \langle T\tilde{\pi}(a)\hat{e}, \hat{e} \rangle$ for all $a \in A$.

PROOF. Suppose $\phi \in [0, \phi]$. Then by Theorem 3.5, $\phi(a) = \phi_T(a) = \langle T\tilde{\pi}(a)\hat{e}, \hat{e} \rangle$ and also by Theorem 3.5, it is clear.

Conversely, since $\phi_I = \phi$ and $\sum_{i,j} b_i * (\phi - \phi_T)(a_i * a_j) b_j = \langle (I - T)\hat{x}, \hat{x} \rangle \geq 0$, for $a_1, \dots, a_n \in A$, $b_1, \dots, b_n \in B$ and $x = \sum_{j=1}^n \pi(a_j) \langle e \cdot b_j \rangle \in X$, the proof is immediate.

References

- W.B. Arveson, Subalgebras of C*-algebras, Acta Math. 123 (1969), 141-167.
- S.K. Berberian, Lectures in Functional Analysis and Operator Theory, Springer-Verlag 1974.
- 3. T.W. Palmer, *-representations of U*-algebras, Indiana Univ. Math. J. 20 (1971), 929-933.
- 4. W.L. Paschke, Completely positive maps on U*-algebras,

- Proc. Amer. Math. Soc. (1972), 412-416.
- 5. _____, Inner product modules over B*-algebras, Amer. Math. Soc. 1973.
- W.F. Stinespring, Positive functions on C*-algebras, Proc. Amer. Math. Soc. (1955), 211-216.
- 7. M. Takesaki, Theory of Operator Algebras I, Springer-Verlag 1979.
- 8. M.A. Rieffel, Induced representations of C*-algebra, Induced Univ. Math. J. 1975.

Ch'angwon National University Ch'angwon 641-240 Korea

Received March 2, 1988