THE MIXED PROBLEM FOR PARABOLIC TYPE IN $L^{\text {t }}$ SPACE

Dong-Gun Park

1. Introduction

Let Ω be not necessary bounded domain \boldsymbol{R}^{N} locally regular of class $C^{2 n}$ and uniformly regniar of class C^{n} in the sense of F.E. Browder [4]. We consider the following linear parabolic mixed problem:
(1.1) $\partial u(x, t) / \partial t+A(x, t, D) u(x, t)=f(x, t), \quad x \in \Omega$,

$$
0<t \leqq T
$$

(1.2) $B,(x, t, D) u(x, t)=0, \quad j=1, \cdots, m / 2, \quad x \in \partial \Omega$, $0<t \leqq T$,
(1.3) $u(x, 0)=u_{0}(x), \quad x \in \Omega$ in $L^{1}(\Omega)$.

Let $\left\{M_{k}\right\}$ be a sequence of positive numbers which has the properties specified later [5]. Assuming that $A(t)$ belongs to the class $\left\{M_{k}\right\}[5]$ as a function of t in some sense, we shall prove that $u(t)$ is also a function of t of the class $\left\{M_{k}\right\}$ provided that $f(t)$ is of the same class.

The objective of the present paper is concerned with the regularity in t of the solution $u(t)$ in $L^{1}(\Omega)$. Defining for each $t \in[0, T]$ a linear operator $A_{p}(t)$ in $L^{1}(\Omega)(1<p<\infty)$ by

$$
\begin{gathered}
D\left(A_{p}(t)\right)=\left\{u \in W^{\prime m, p}(\Omega): \quad B,(x, t, D) u(x)=0 \text { on } \partial \Omega,\right. \\
\\
j=1, \cdots, m / 2\} \\
\left(A_{p}(t) u\right)(x)=A(x, t, D) u(x) \text { for } u \in D\left(A_{p}(t)\right) .
\end{gathered}
$$

We write (1.1)-(1.3) in an evolution equation in $L^{p}(\Omega)$ of the following form;
(1.4) $d u(t) / d t+A_{p}(t) u(t)=f(t), 0<t \leqq T$,
(1.5) $u(x, 0)=u_{0}(x)$.

In the case $\mathrm{I}<p<\infty$ several papers have been already published concerning this problem. In [7] (see also [8], [9]) H. Tanabe proved

$$
\begin{aligned}
& \|(\partial / \partial \dot{L})^{-(\hat{O} / \partial \dot{t}+\hat{\partial} / \hat{\partial} s)^{i}(\partial / \partial t)^{k} U(t, s) \|} \\
& \quad \leqq L_{0} L^{n+l+k} M_{n+l+k}(s-s)^{-n-k}
\end{aligned}
$$

for some constants L_{0}, L and all non-negative integers n, l, and k, assuming that
i) each $A_{p}(t)$ is the generator of an analytic semigroup on $L^{p}(\Omega)$,
ii) $A_{p}(t)^{-1}$ is infinitely differentiable in t,
iii) the resolvents $\left(\lambda-A_{p}(t)\right)^{-1}$ satisfy an estimation of the form

$$
\|(\partial / \partial t)\left(\lambda-A_{p}(t)\right)^{-1}| | \leqq K_{0} K^{n} M_{n} /|\lambda|
$$

for non-negative integer n and $\lambda \in \Sigma=\{\lambda: \theta \leqq \arg \lambda \leqq 2 \pi-\theta$, $0<\theta<\pi / 2\}$.

In the case of $p=1$, in the paper [6] we have already constructed the evolution operator $U(t, s)$ of the above equation.

The main theorem of this paper is to establish a similar esitmation in $L^{1}(\Omega)$.

We start in Section-2 with some preliminaries and assumptions related to the paper. In Section 3, we study the case $m>N / 2$. Finally, in Section 4 , we simply establish the estimate of the main result.

2. Preliminaries and assumptions

If X and Y are the Banach spaces, we denote by $B(X, Y)$; the set of all bounded linear operators from X to Y. The operator norm of $A(t)$ is denoted by $A(t)_{B(X, Y)}$.

Let $W^{m, o}(\Omega)$ be the Banach space consisting of measurable functions defined in Ω whose distribution derivatives of order up to m belong to $L^{p}(\Omega)$. The norm of $W^{m, s}(\Omega)$ and $L^{p}(\Omega)$ is defined by

$$
\begin{aligned}
& u_{m, p}=\left(\sum_{a \mid \leqslant m} \int_{\Omega}\left|D^{a} u\right| d x\right)^{1 / p} \\
& u_{p}=\left(\int|u|^{p} d x\right)^{1 / p}
\end{aligned}
$$

respectively.
For each $t \in(0, T]$,

$$
A(x, t, D)=\sum_{|x| \leqq m} a_{o}(x, t) D^{\alpha}
$$

is a strongly elliptic linear differential operator of order m and

$$
B_{j}(x, t, D)=\sum_{|\beta| \leqslant m_{j}} b_{x, \beta}(x, t) D^{\beta}, j=1, \cdots, m / 2
$$

is a normal set of linear differential operators on $\partial \Omega$ of an order less than m.

Let $A(t)$ be an operator in $L^{p}(\Omega), \quad 1<p<\infty$, defined by
(2. 1) $D(A(t))=\left\{u \in W^{m, p}(\Omega): B,(x, t, D) u(x)=0\right.$,

$$
j=1, \cdots, m / 2, \quad x \in \partial \Omega\}
$$

$$
\text { for } x \in D(A(t)), \quad(A(t) u)(x)=A(x, t, D) u(x) \text {. }
$$

Remark. Properly speaking, $A(t)$ depends on p and we would normally write $A_{\phi}(t)$ but here, for simplicity we will write $A(t)$.

Let $\arg \lambda=\theta$ be called the ray of minimal growth of the resolvent of $A(t)$ in the sense of S . Agmon for any $\phi \in(\pi / 2,3 \pi / 2)[9]$.
(A.1) If $B_{j}(x, t, D)_{j=1}^{m / 2}$ is of Dirichlet type then $-A(t)$ for any strongly elliptic operator $A(x, t, D)$ of order m generates an analytic semigroup $\exp (-\tau A(t))$ in $L^{p}(\Omega)$:
i. e., there exists $\theta_{0} \in(0, \pi / 2)$ such that

$$
\rho(A(t)) \supset \Sigma=\left\{\lambda: \theta_{0} \leqq \arg \lambda \leqq 2 \pi-\theta_{0},|\lambda| \geqq C_{0}\right\}
$$

then $C_{0}=0$ implies $0 \in \rho(A(t))$.
(A.2) The formal adjoint of $A(x, t, D)$ is

$$
A^{\prime}(x, t, D)=\sum_{|a| \leq m} a_{a^{\prime}}{ }^{\prime}(x, t) D^{a},
$$

and the adjoint system of boundary operators $\{B,(x, t, D)\}_{j=1}^{m / 2}$ can be constructed for $A(x, t, D)$ of $\{B,(x, t, D)\}_{j=1}^{m / 2}$.

Remark. If $A^{\prime}(t)$ defines $\left\{A^{\prime}(x, t, D), B_{2}{ }^{\prime}(x, t, D), p^{\prime}\right\}$ replacing $\left\{A(x, t, D), B_{j}(x, t, D), p\right\}$ in (2.1) then $A^{*}(t)=$ $A^{\prime}(t)$, where $A^{*}(t)$ is the adjoint system of $A(t)$ defined in $L^{p}(\Omega)$.

Let $\left\{M_{k}: k=0,1,2, \cdots\right\}$ be a sequence of positive numbers satisfying the following condition [5]: there exist positive
numbers d_{0}, d_{1}, and d_{2} such that

$$
\begin{aligned}
& M_{k+1} \leqq d_{0}^{k} M_{k}, \quad M_{k} \leqq M_{k+1}, k=0,1,2, \cdots \\
& \binom{k}{j} M_{k-1} M_{3} \leqq d_{1} M_{k}, \quad 0 \leqq j \leqq k \\
& M_{j+k} \leqq d_{2}^{3+1} M_{j} M_{k}, \quad j, k=0,1,2, \cdots
\end{aligned}
$$

Here, however, all of the coefficients of $A(x, t, D)$ and $\left\{B_{s}(x, t, D)\right\}_{j=1}^{\pi / 2}$, as functions of t, are assumed to belong to the class $\left\{M_{k}\right\}$.
(A.3) The inequalities

$$
\begin{aligned}
& \left|(\partial / \partial t)^{l} a_{a}(x, t)\right| \leqq B_{0} B^{l} M_{i} \\
& \left|(\partial / \partial t)^{l} D_{r}^{*} b_{j, \beta}(x, t)\right| \leqq B_{0} B^{\prime} M_{i}
\end{aligned}
$$

hold for every $x \in \bar{\Omega}, t \in(0, T], \quad|\alpha| \leqq m, \quad|\beta| \leqq m_{3}$ $|\gamma| \leqq m \rightarrow m, \quad j=1, \cdots, m / 2$ and $l=0,1,2, \cdots$, there exist positive numbers B_{0} and B.

Under the above assumption we consider the following: there exist positive numbers K_{0} and K such that for every $\lambda \in \Sigma$, and $l=0,1,2, \cdots$

$$
\left\|(\partial / \partial t)^{I}(A(t)-\lambda)^{-1}\right\|_{e\left(L^{1}, L^{1}\right)} \leqq K_{0} K^{l} M_{i}
$$

Putting

$$
\begin{aligned}
& A(x, t, D+\eta)=\sum_{|\alpha| \leqslant m} a_{a}(x, t)(D+\eta)^{a} \\
& B_{j}(x, t, D+\eta)=\sum_{|\beta| \leqq m_{j}} b_{i, \beta}(x, t)(D+\eta)^{\beta} \quad \text { for } \eta \in C^{N}
\end{aligned}
$$

The operators $A^{n}(t)$ and $A^{\prime \bar{n}}(t)$ are defined as follows:

$$
\begin{gathered}
D\left(A^{\eta}(t)\right)=\left\{u \in W^{m, p}(\Omega): B_{j}(x, t, D+\eta) u(x)=0\right. \\
\\
j=1, \cdots, m / 2, x \in \partial \Omega\} \\
\left(A^{n}(t) u\right)(x)=A(x, t, D+\eta) u(x) \text { for } u \in D\left(A^{\eta}(t)\right)
\end{gathered}
$$

and

$$
\begin{gathered}
D\left(A^{\prime \bar{\eta}}(t)\right)=\left\{u \in W^{m, p^{\prime}}(\Omega): B_{3}^{\prime}(x, t, D+\bar{\eta}) u(x)=0\right. \\
j=1, \cdots, m / 2, x \in \partial \Omega\} \\
\left(A^{\prime \bar{\xi}}(t) u\right)(x)=A^{\prime}(x, t, D+\bar{\eta}) u(x) \text { for } u \in D\left(A^{\prime \bar{\eta}}(t)\right) .
\end{gathered}
$$

Then

$$
\left(A^{\eta}(t)\right)^{*}=A^{\prime \overline{4}}(t)[9] .
$$

If $\delta>0$ is a sufficiently small, $\lambda \in \Sigma$ and $|\eta| \leqq \delta|\lambda|^{1 / m}$ then $\lambda \in \rho\left(A^{n}(t)\right)$ we get [9]

$$
\begin{aligned}
& \left\|\left(A^{n}(t)-\lambda\right)^{-1}\right\|_{B\left(L^{p}, L^{p}\right)} \leqq C_{p} /|\lambda| \\
& \left\|\left(A^{\eta}(t)-\lambda\right)^{-1}\right\|_{B\left(L^{p}, w^{m, p}\right)} \leqq C_{p} \\
& \left\|\left(A^{\prime \bar{n}}(t)-\lambda\right)^{-1}\right\|_{B\left(L^{p^{\prime}}, \mathbb{W}^{m \prime}, p^{\prime}\right)} \leqq C_{p} .
\end{aligned}
$$

PROPOSITION 2.1. There exist positive numbers C_{1} and C_{2} such that for every $\lambda \in \Sigma$ and $l=0,1,2, \cdots$

$$
\begin{aligned}
& \left\|(\partial / \partial t)^{l}\left(A^{\eta}(t)-\lambda\right)^{-1}\right\|_{\left.B C L^{p}, L^{p}\right)} \leqq C_{1} C_{2}^{l} M_{l} /|\lambda|, \\
& \left\|(\partial / \partial t)^{l}\left(A^{\eta}(t)-\lambda\right)^{-1}\right\|_{\left.B C L^{p}, \mathbb{w}^{m p}\right)} \leqq C_{1} C_{2}^{l} M_{l}, \\
& \left\|(\partial / \partial t)^{l}\left(A^{\prime \pi}(t)-\lambda\right)^{-i}\right\|_{\left.B C L^{p^{\prime}}, w^{m}, p^{\prime}\right)} \leqq C_{1} C_{2}^{l} M_{l} .
\end{aligned}
$$

Proof. If there is no fear of confusion we simply write $\|\cdot\|_{m}$ and $\|\cdot\|$ in place of $\|\cdot\|_{m, p}$ and $\|\cdot\|_{p}$ respectively. For $f \in L^{p}(\Omega)$, putting

$$
u(t)=\left(A^{\eta}(t)-\lambda\right)^{-1} f
$$

we get
(2.2) $(A(x, t, D+\eta)-\lambda) u(x, t)=f(t), x \in \Omega$,
(2.3) $B_{j}(x, t, D+\eta) u(x, t)=0, \quad x \in \partial \Omega, j=1, \cdots, m / 2$.

Putting

$$
\begin{aligned}
& u^{l}=(\partial / \partial t)^{l} u \\
& A^{l}(x, t, D+\eta)=\sum_{|a| \underline{\underline{<}} m}(\partial / \partial t)^{I} a_{a}(x, t)(D+\eta)^{\alpha}
\end{aligned}
$$

$$
\begin{aligned}
B_{j}^{t}(x, t, D+\eta)= & \sum_{\left.\right|_{i j} \leqslant_{j}}(\partial / \partial t)^{i} b_{i, s}(x, t)(D+\eta)^{I}, \\
& j=1, \cdots, m / 2
\end{aligned}
$$

And differentiatng in t both sides of (2.2) and (2.3) we get

$$
\begin{aligned}
& (A(x, t, D+\eta)-\lambda) u^{t}(x, t)=-\sum_{k=0}^{l-1}\binom{l}{k} A^{t-k}(x, t, D+\eta) u^{k}(x, t) \\
& B_{j}(x, t, D+\eta) u^{l}(x, t)=-\sum_{k=0}^{l-1}\binom{l}{k} B_{y}^{t-k}(x, t, D+\eta) u^{k}(x, t)
\end{aligned}
$$

In view of these we get

$$
\begin{aligned}
&(A(x, t, D)-\lambda) u^{l}(x, t) \\
&=(A(x, t, D)-A(x, t, D+\eta)) u^{l}(x, t) \\
&-\sum_{k=0}^{l-1}\binom{l}{k} A^{l-k}(x, t, D+\eta) u^{k}(x, t) \\
& B_{3}(t, t, D) u^{\prime}(x, t) \\
&=\left(B_{,}(x, t, D)-B,(x, t, D+\eta)\right) u^{l}(x, t) \\
&-\sum_{k=0}^{l-1}\binom{l}{k} B_{j}^{l-k}(x, t, D+\eta) u^{k}(x, t)
\end{aligned}
$$

By Theorem 17.5 of [9], we get the inequality

$$
\begin{aligned}
& \sum_{i=0}^{m}|\lambda|^{(n-2) / n}| | u^{i}(t) \|_{i} \\
& \leqq C\left\{\|(A(x, t, D)-A(x, t, D+\eta)) u^{i}(t)\right. \\
& -\sum_{k=0}^{i-1}\binom{l}{k} A^{i-k}(x, t, D+\eta) u^{k}(t) \| \\
& +\sum_{j=1}^{m} \sum^{2}|\lambda|^{\left(m^{\prime}-m_{j}\right) / m} \|\left(B,(x, t, D)-B_{j}(x, t, D+\eta)\right) u^{t}(t) \\
& -\sum_{k=0}^{l-1}\binom{l}{k} B_{j}^{l-k}(x, t, D+\eta) u^{k}(t)| | \\
& +\sum_{j=1}^{m / 2}| |\left(B_{s}(x, t, D)-B_{j}(x, t, D+\eta)\right) u^{l}(t) \\
& \left.-\left.\sum_{k=0}^{l-1}\binom{l}{k} B_{s}^{l-k}(x, t, D+\eta) u^{k}(t)\right|_{m-m}\right\} .
\end{aligned}
$$

Putting $\delta \leqq 1$, we get

$$
\begin{aligned}
& \left\|(A(x, t, D)-A(x, t, D+\eta)) u^{l}(t)\right\| \\
& \leqq C \sum_{i=1}^{m-1}|\eta|^{m-i} \mid\|u(t)\|_{i} \leqq C \sum_{i=0}^{m-1}\left(\delta|\lambda|^{1^{m} m}\right)^{m-i}\|u(t)\|_{i} \\
& \leqq C \sum_{i=0}^{\pi-1}|\lambda|^{(m-i) / m| | u(t) \|_{i}}, \\
& \sum_{k=0}^{l-1}\binom{l}{k} A^{l-k}(x, t, D+\eta) u^{k}(t) \\
& \leqq C \sum_{k=0}^{l-1}\binom{l}{k} B_{0} B^{l-k} M_{i-k} \sum_{i=0}^{m}|\eta|^{m-i}\left\|u^{k}(t)\right\|_{i} \\
& \leqq C \sum_{k=0}^{l-k}\binom{l}{k} B_{0} B^{t-k} M_{l-k} \sum_{i=0}^{m}|\lambda|^{(m-k) / m \mid}| | u^{k}(t) \|_{i}, \\
& \sum_{j=1}^{m / 2}|\lambda|\left(m^{\left(m-m_{j}\right) / m| |}\left(B_{j}(x, t, D)-B_{j}(x, t, D+\eta)\right) u^{l}(t) \mid!\right. \\
& \left.\leqq C \sum_{j=1}^{\pi / 2} \mid \lambda\right\}^{\left(m^{m}-m_{j}\right) / m^{m}} \sum_{i=0}^{m, 1}|\eta|^{m_{j}-i}| | u^{l}(t)| |_{i} \\
& \leqq C \sum_{j=1}^{m / 2}|\lambda|^{\left(m^{-m} m_{j}\right) / m} \sum_{i=0}^{m,-1}\left(\delta|\lambda|^{1 / m}\right)^{m_{j}-i}\left\|u^{l}(t)\right\|_{i} \\
& \leqq C \delta \sum_{i=0}^{m-1}\left\|\lambda \sum^{(m-i) / m}\right\| u^{t}(t) \|_{i}, \\
& \sum_{j=1}^{m / 2}|\lambda|\left(m-m_{j}\right) / m\left\|\left\lvert\, \sum_{k=0}^{l-1}\binom{l}{k} B_{s}^{l-k}(x, t, D+\eta) u^{k}(t)\right.\right\| \\
& \left.\leqq C \sum_{j=1}^{m / 2}|\lambda|^{\left(m-m_{j}\right) / m} \sum_{k=0}^{t-1}\binom{l}{k} B_{0} B^{l-k} M_{t-k} \sum_{i=0}^{m_{j}}|\eta|^{m_{j}-i}| | u^{k}(t) \right\rvert\, \|_{i} \\
& \leqq C^{m / 2} \sum_{j=1}^{2}|\lambda|\left(m^{\left(m-m_{j}\right) / m} \sum_{k=0}^{l-1}\binom{l}{k} B_{0} B^{l-k} M_{l-k} \sum_{i=0}^{m_{j}}|\lambda|\left(m_{j}-i\right) / m\left\{\left.\left|u^{k}(t)\right|\right|_{i}\right.\right. \\
& \leqq C \sum_{k=0}^{l-1}\binom{l}{k} B_{0} B^{1-k} M_{i-k} \sum_{i=1}^{m}|\lambda|^{(m-i) / m}| | u^{k}(t) \|_{i},
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{j=1}^{m / 2}\left\|\left(B_{j}(x, t, D)-B_{j}(x, t, D+\eta)\right) u^{l}(t)\right\|_{m-m_{j}} \\
& \leqq C \sum_{j=1}^{m / 2} \sum_{i=0}^{m_{j}-1}|\eta|^{m_{j}-1}| | u^{l}(t) \|_{m-m_{j}+2} \\
& \leqq C \sum_{i=0}^{m-1}|\eta|^{m-i}\left\|u u^{l}(t)\right\|_{i} \\
& \leqq C \delta \sum_{i=0}^{m-1}|\lambda|^{(m-i) / m}\left\|u^{I}(t)\right\|_{i} \\
& \sum_{j=1}^{m / 2}\left\|_{k=0}^{l-1}\binom{l}{k} B_{j}^{l-k}(x, t, D+\eta) u^{k}(t)\right\|_{m-m,} \\
& \leqq C \sum_{j=1}^{m / 2} \sum_{i=0}^{i-1}\binom{l}{k} B_{0} B^{i-k} M_{l-k} \sum_{i=0}^{m}|\eta|^{m,-i} \| u^{k}(t)| |_{m-m_{j}+i} \\
& \leqq C \sum_{k=0}^{l-1}\binom{l}{k} B_{0} B^{i-k} M_{i-k} \sum_{i=0}^{m}|\lambda|^{(m-1) / m}| | u^{k}(t) \|_{i .}
\end{aligned}
$$

Inserting these into (2.4) we get

$$
\begin{aligned}
& \sum_{i=0}^{m}|\lambda|^{(m-i) / m}| | u^{l}(t) \|_{2} \\
& \leqq \\
& \quad C\left\{\delta \sum_{i=0}^{m-1}|\lambda|^{(m-i) / m}| | u^{t}(t) \mid \|_{i}\right. \\
& \left.\left.\quad+\sum_{k=0}^{l-1}\binom{l}{k} B_{0} B^{t-k} M_{l-k} \sum_{i=0}^{m}|\lambda|^{(m-1) / m}| | u^{k}(t) \right\rvert\, \|_{i}\right\} .
\end{aligned}
$$

Replacing $\delta>0$ by sufficiently small number if necessary we get
(2.5) $\quad \sum_{i=0}^{m}|\lambda|^{(m-i) / m}\left\|u^{l}(t)\right\|_{i}$

$$
\left.\leqq C \sum_{k=0}^{l-1}\binom{l}{k} B_{0} B^{l-k} M_{l-k} \sum_{i=0}^{m}|\lambda|^{\left(m^{-1}\right) / m \mid} \right\rvert\, u^{k}(t) \|_{i}
$$

Applying $\|u(t)\|_{i} \leqq C\|u(t)\|_{m}^{i / m}\|u(t)\|^{(m-i) / m}$ and Young's
inequality to the above inequality and
(2.6) $\quad\left\|u^{l}(t)\right\| m+|\lambda|\left\|u^{l}(t)\right\|$

$$
\leqq \mathrm{C} \sum_{k=0}^{l-1}\binom{l}{k} B_{0} B^{i-k} M_{i-k}\left(\left\|u^{k}(t)\right\|_{m}+|\lambda|\left\|u^{k}(t)\right\|\right)
$$

Hence, (2.5) and (2.6) are essentially equivalent.
In view of (7) there exist positive numbers C_{1} and C_{2} such that

$$
\left\|u^{\prime}(t)\right\|_{m}+|\lambda|\left\|u^{1}(t)\right\| \leqq C_{2} C_{2} M_{t}\|f\| .
$$

By the above inequality, we obtain the conclusion of proposition.

3. Estimates of the kernel of the derivatives of $\exp (-\boldsymbol{\tau} \boldsymbol{A}(\boldsymbol{t}))$

For simplicity we consider $m>N / 2$ and by Sobolev's. imbedding theorem we get
(3.1) $\|u(t)\|_{\infty} \leqq \gamma\|u(t)\|_{m, 2}^{N / 2 m}\|u(t)\|_{2}^{1-N / 2 m}$.

We consider that $K_{\lambda, \mu}(x, y: t)$ and $K_{\lambda, \mu}^{n}(x, y ; t)$ denote the kernel of $(A(t)-\lambda)^{-1}(A(t)-\mu)^{-1}$ and $\left(A^{n}(t)-\lambda\right)^{-1}\left(A^{n}(t)-\right.$ $\mu)^{-1}$ respectively for $\lambda, \mu \in \Sigma$ and $|\eta| \leqq \delta \min \left(|\lambda|^{1 / m},|\mu|^{1 / n}\right)$.

Lemma 3.1. There exist positive numbers C_{1} and C_{2} such that for any $\lambda, \mu \in \Sigma$ and $l=0,1,2 \cdots$

$$
\begin{aligned}
& \left|(\partial / \partial t)^{l} K_{\lambda, \mathrm{n}}^{n}(x, y: t)\right| \\
& \quad \leqq \gamma^{2} C_{1}{ }^{2} C_{2} d_{1}(l+1) M_{l}|\lambda|^{N / 2 m-1}|\mu|^{N / 2 m-1} .
\end{aligned}
$$

Proof. In view of Leibniz's formula we get

$$
\begin{aligned}
& (\partial / \partial t)^{I}\left\{\left(A^{\eta}(t)-\lambda\right)^{-1}\left(A^{n}(t)-\mu\right)^{-1}\right\} \\
& \quad=\sum_{\kappa=0}^{l} l k(\partial / \partial t)^{i-k}\left(A^{\eta}(t)-\lambda\right)^{-1}(\partial / \partial t)^{k}\left(A^{\eta}(t)-\mu\right)^{-1} .
\end{aligned}
$$

In view of (3.1) and Proposition 2.1 we get

$$
\begin{aligned}
& \left\|(\partial / \partial)^{l^{-k}}\left(A^{n}(t)-\lambda\right)^{-1} f\right\|_{\infty} \\
& \quad \leqq \gamma\left\|(\partial / \partial t)^{t-k}\left(A^{n}(t)-\lambda\right)^{-1} f\right\|_{m^{N / 2 m}} \\
& \quad\left\|(\partial / \partial t)^{i-k}\left(A^{n}(t)-\lambda\right)^{-1} f\right\|^{1-N / 2 m} \\
& \leqq \gamma\left(C_{1} C_{2}^{1-k} M_{i-k}\| \| f \|\right)^{N / 2 m}\left(C_{1} C_{2}^{l-k} M_{i-k}\|f\| / \lambda \mid\right)^{1-N / 2 m} \\
& =\gamma C_{1} C_{2}^{l-k} M_{l-k}|\lambda|^{1 / 2 m-1}\|f\| .
\end{aligned}
$$

Hence,

$$
\left\|\left.(\partial / \partial t)^{l-k}\left(A^{\eta}(t)-\lambda\right)^{-1}\left|\|_{\left.E C L^{2}, L^{\infty}\right)} \leqq \gamma C_{1} C_{2}{ }^{t-k} M_{l-k}\right| \lambda\right|^{N / 2 m-1}\right.
$$

In view of (9) we get
\mid Kernel of $(\partial / \partial t)^{t-k}\left(A^{n}(t)-\lambda\right)^{-1}(\partial / \partial t)^{k}\left(A^{\pi}(t)-\mu\right)^{-1} \mid$

$$
\begin{aligned}
& \leqq\left\|(\partial / \partial)^{i-k}\left(A^{\eta}(t)-\lambda\right)^{-1}\right\|_{\left.B C L^{2}, L^{\infty}\right)} \\
&\left\|(\partial / \partial t)^{k}\left(A^{\prime h}(t)-\mu\right)^{-1}\right\|_{B L^{2}, L^{\infty}} \\
& \leqq\left.\gamma C_{1} C_{2}{ }^{l-k} M_{l-k}|\lambda|\right|^{N / 2 m-1} C_{1} C_{2}{ }^{k} M_{k}|\mu|^{N / 2 m-1} \\
&= \gamma^{2} C_{1}{ }^{2} C_{2}{ }^{i} M_{l-k} M_{k}|\lambda|^{N / 2 m-1}|\mu|^{N / 2 m-1} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \left|(\partial / \partial t)^{l} K_{\lambda, p}^{n}(x, y: t)\right| \\
& \quad \leqq \sum_{k=0}^{l}\binom{l}{k} y^{2} C_{1} C_{2}^{l} M_{i-k} M_{k}|\lambda|^{N / 2 m-1}|\mu|^{N / 2 m-1} \\
& \quad \leqq \gamma^{2} C_{1}^{2} C_{2}^{l} d(l+1) M_{i}|\lambda|^{N / 2 m-1} \mid \mu^{N / 2 m-1} .
\end{aligned}
$$

Therefore the proof of Lemma 3.1 is completed.

Lemma 3.2. There exist positive numbers C_{1} and C_{2} such that for any $\lambda, \mu \in \Sigma$ and $l=0,1,2, \cdots$
$\left|(\partial / \partial t)^{t} K_{\lambda, \mu}(x, y: t)\right|$

$$
\begin{align*}
& \leqq \gamma^{2} C_{1}{ }^{2} C_{2}{ }^{l} d_{1}(l+1) M_{l}|\lambda|^{N / 2 m-1}|\mu|^{N / 2 m-1}\left\{e^{-\delta\left|\lambda 1^{1} / m_{1}-g\right|}\right. \\
& \left.\quad+e^{-s \mid \mu 1^{1 / m} m_{1 x}-y l}\right\} . \tag{1}
\end{align*}
$$

PRóof. $K_{2, \mu}(x, y: t)=e^{-(x-y)^{n}} K_{i, u}^{n}(x, y: t)$.
Hence, for real vector η, we get

$$
\begin{aligned}
& \left|(\partial / \partial t)^{l} K_{i, n}(x, y: t)\right|=\left|e^{-(x-y)^{n}}(\partial / \partial t)^{l} K_{,, x}^{n}(x, y: t)\right| \\
& \leqq e^{-\left(x^{-}-y^{n}\right.} \gamma^{2} C_{1} C_{2}{ }^{!} d_{1}(l+1) M_{i}|\lambda|^{N / 2 m-1}|\mu|^{N / 2 m-1} .
\end{aligned}
$$

Inserting the minimal value of η into the right side of the inequality we get

$$
\begin{aligned}
& \left|(\partial / \partial t)^{l} K_{1, s}(x, y: t)\right| \\
& \quad \leqq \gamma^{2} C_{1} C_{2}^{t} d_{1}(l+1) M_{l}|\lambda|^{N / 2 m-1}|\mu|^{N / 2 m-1} e^{-\delta \mathrm{min}\left(\left.\{1)\right|^{1 / m}, \mid x 1^{1 / m}\right)|x-y|} .
\end{aligned}
$$

In view of this and

$$
e^{-\delta \min \left(\left.|1|\right|^{1 / m},|\mu|^{1 / \pi}\right)\left|x^{-y}\right|} \leqq e^{-\delta|\lambda|^{1 / m}|x-y|}+e^{-\delta|\mu|^{1 / m}|x-y|} .
$$

Proposition 3.3. There exist positive numbers C_{3}, C_{4}, c and $\theta \in(0, \pi / 2)$ such that for any $|\arg \tau| \leqq \theta_{1}$ and $l=0,1,2, \cdots$

$$
\left|(\partial / \partial t)^{t} G(x, y, \tau: t)\right| \leqq C_{3} C_{4 i}\left(M_{i} \frac{1}{|\tau|^{N / m}} \exp \left(-c \frac{x-y^{m /(m-1)}}{|\tau|}\right) .\right.
$$

Proof. We get

$$
\begin{aligned}
& \exp (-\tau A(t))=\exp (-(\tau / 2) A(t))^{2} \\
& =\frac{1}{2 \pi i} \int_{\mathrm{r}} e^{-(\tau / 2) \lambda}(A(t)-\lambda)^{-1} d \lambda \frac{1}{2 \pi i} \int_{\mathrm{r}} e^{-(\tau / 2)^{x}(A(t)-\mu)^{-1} d \mu} \\
& =\left(\frac{1}{2 \pi i}\right)^{2} \int_{\mathrm{r}} \int_{\mathrm{r}} e^{-(\tau / 2)(\lambda+\mu)}(A(t)-\lambda)^{-1}(A(t)-\mu)^{-1} d \lambda d \mu .
\end{aligned}
$$

Hence

$$
G(x, y, \tau: t)=\left(\frac{1}{2 \pi i}\right)^{2} \int_{\Gamma} \int_{\mathrm{r}} e^{-(\tau / 2)(\lambda+\mu)} K_{\lambda,{ }^{2}}(x, y: t) d \lambda d \mu
$$

where $\Gamma_{x, y, \tau / 2}=\left\{\lambda:|\arg \lambda|=\theta_{2},|\lambda| \geqq a\right\}=\left\{\lambda: \lambda=a e^{i \theta},|\theta| \geqq \theta_{0}\right\}$.

$$
a=\varepsilon \frac{|x-y|^{m /(m-1)}}{|\tau / 2|^{m /(m-1)}}, \quad \rho=\frac{|x-y|^{m /(m-1)}}{|\tau / 2|^{1 /(m-1)}}, \quad a=\frac{\varepsilon \rho}{|\tau / 2|}
$$

and $a^{1 / m}|x-y|=\varepsilon^{1 / m} \rho$.
In view of Lemma 3.2 we get
(3.2) $\left|(\partial / \partial t)^{\prime} G(x, y, \tau: t)\right|$

$$
\begin{aligned}
& \left.\leqq\left|\left(\frac{1}{2 \pi i}\right)^{2}\right| \int_{\Gamma x, y, \pm / 2} \int_{\Gamma x, y, \tau / 2}\left|e^{-(t / 2)(\lambda+\mu)}\right| \right\rvert\,(\partial / \partial t)^{\imath} K_{\lambda, \mu}(x, y: t) \| \\
& ||d \lambda|| d_{\mu} \mid \\
& =\left(\frac{1}{2 \pi}\right)^{2} \gamma^{2} C_{1}^{2} C_{2}\left\{\left\{\int_{\Gamma x, y, \tau / 2}|\lambda|^{N / 2 m-1} e^{-\operatorname{Re}(\tau / 2) \lambda} e^{-\delta|\lambda|^{1 / m}|x-y|}|d \lambda| \times\right.\right. \\
& \int_{\Gamma_{\mathrm{x}}, y, \tau / 2}|\mu|^{N / 2 m-1} e^{-\operatorname{Re}(\tau / 2){ }^{\mu}}|d \mu| \\
& =\int_{\Gamma_{r}, y, \tau / 2}|\lambda|^{N / 2 m-1} e^{-\operatorname{Re}(\tau / 2) \lambda}|d \lambda| \times \\
& \left.\int_{\Gamma_{x}, y, \tau / 2}|\mu|^{N / 2 m-1} e^{-R e(\tau / 2)} e^{-\delta\left|\mu 1^{1 / m}\right| x-y \mid}\left|d_{\mu}\right|\right\} \text {. }
\end{aligned}
$$

For $0<\theta_{0}<1$, if τ is such that $\frac{|I m \tau|}{R e \tau} \leqq\left(1-\theta_{0}\right) \frac{\cos \theta_{\theta}}{\sin \theta_{0}}$ assuming $\lambda=r e^{ \pm i \theta_{0}}(r>0)$ then $R e(\tau / 2)^{\lambda} \leqq r \operatorname{Re}(\tau / 2) \varepsilon_{0} \cos \theta_{0}$.

Hence, there exists a positive c such that

$$
\operatorname{Re}(\tau / 2) \lambda \geqq c r|\tau / 2|[9],
$$

we take $\Gamma_{x, y, \tau / 2}=\Gamma_{1} \Gamma_{2} \Gamma_{3}$, where $\Gamma_{1}=\left\{\lambda=r e^{-i \theta_{0}}: r \geqq a\right\}$, $\Gamma_{2}=\left\{\lambda=a e^{i}: \theta_{0} \leqq \phi \leqq 2 \pi-\theta_{0}\right\}$ and $\Gamma_{3}=\left\{\lambda=r e^{\theta_{0}}: r \geqq a\right\}$.

We get

$$
\begin{aligned}
& \int_{\Gamma_{3}}|\lambda|^{N / 2 m-1} e^{-\operatorname{Re}(\tau 2 / 2)} e^{-\left.\delta|\lambda|\right|^{1 / m}|x-y|}|d \lambda| \\
& \quad \leqq \int_{a}^{\infty} r^{N / 2 m-1} e^{-c r|\tau / 2|} e^{-\delta \gamma^{1 / a n}|x-y|} d r
\end{aligned}
$$

$$
\begin{aligned}
& \leqq e^{-c a^{1 / m \mid x-y t} \int_{a}^{\infty} r^{N / 2 m-1} e^{-c r \mathrm{t} / 2!} d r} \\
& \leqq \Gamma(N / 2 m)((1 / c)|2 / \tau|)^{N / 2 m} e^{-\delta \xi^{1 / m}} \rho
\end{aligned}
$$

And similarly for an integral along Γ_{1},

$$
\begin{aligned}
& \int_{\Gamma_{2}}|\lambda|^{N / 2 m-1} e^{-\operatorname{Re}(\tau \lambda / 2)} e^{-\delta|\lambda|^{1 / m \mid x-y!}|d \lambda|} \\
& \leqq a^{N / 2 m-1} e^{\mid \tau / 21 a} e^{-\delta a^{1 / m}|x-y|} 2 \pi a \\
& \quad=2 \pi a^{N / 2 m} e^{\mid \tau / 2!a} e^{-\delta a^{1 / m} m_{|x-y|}} .
\end{aligned}
$$

If x and y are positive numbers, then $x^{y} \leqq(y / e)^{y} e^{x}$. Hence, the integral of the same function along Γ_{2} is dominated by

$$
2 \pi|2 / \tau|^{N / 2 m}(N / 2 m e)^{N / 2 m} e^{2 \varepsilon \delta} e^{-\delta e^{1 / m}} \rho
$$

Collecting these results we obtain

$$
\begin{aligned}
& \int_{\Gamma_{x}, y, r / 2}|\lambda|^{N / 2 m-1} e^{R e(\tau \lambda / 2)} e^{-\delta\left|\lambda 1^{1 / \pi m}\right| x-\eta}|d \lambda| \\
& \quad \leqq 2 \Gamma(N / 2 m)\left((1 / c)|2 / \tau|^{N / 2 m} e^{-\delta \varepsilon^{1 / m}} \rho+\right. \\
& 2 \pi|2 / \tau|^{N / 2 m}(N / 2 m \rho)^{N 2 m} e^{2 \varepsilon \rho-\delta \varepsilon^{1 / m \rho}} \\
& \leqq\left\{2 c^{-N / 2 m} \Gamma(N / 2 m)+2 \pi(N / 2 m e)^{N / 2 m}\right\}|2 / \tau|^{N / 2 m} e^{2 \varepsilon \rho \delta \varepsilon^{1 / m \rho}} . \\
& \int_{\Gamma_{3}}|\mu|^{N / 2 m} e^{-R e(\tau \mu / 2)}|d \mu| \leqq \Gamma(N / 2 m)((1 / c)|2 / \tau|)^{N / 2 m} .
\end{aligned}
$$

Inserting these into (3.2) we get

$$
\begin{aligned}
& \left|(\partial / \partial t)^{t} G(x, y, \tau: t)\right| \\
& \quad \leqq 2(1 / 2 \pi)^{2 \gamma^{2} C_{1}{ }^{2} C_{2}{ }^{l} d_{1}(l+1) M_{l}\left\{2 c^{-N / 2 m} \Gamma(N / 2 m)+\right.} \quad \begin{array}{l}
\left.\quad 2 \pi(N / 2 m e)^{N / 2 m}\right\}^{2}|2 / \tau|^{N m} \times e^{4 \varepsilon \rho-\delta \varepsilon^{1 / m} \rho}
\end{array} .
\end{aligned}
$$

If $\varepsilon>0$ is sufficiently small then $\delta \varepsilon^{t / m-4 \varepsilon}>0$, and

$$
4 \varepsilon \rho-\delta \varepsilon^{1 / m} \rho=-2^{1 /(m-1)}\left(\delta \varepsilon^{1 / m}-4 \varepsilon\right) \frac{|x-y|^{m /(m-1)}}{|\tau|^{1 /(m-1)}}
$$

Therefore, $l+1<i e^{l}$ holds and we obtain the conclusion of proposition.

4. The main theorem

Now, denote the kernel of $(A(t)-\lambda)^{-1}$ by $K_{\lambda}(x, y: t)$
Propostion 4.1. There exist positive numbers C_{5}, C_{6} and $\theta_{0} \in(0, \pi / 2)$ such that for any $\arg \lambda \in\left(-\theta_{0}, \theta_{0}\right)$ and $l=0,1,2, \cdots$
$\left|(\partial / \partial t)^{l} K_{\lambda}(x, y: t)\right|$

$$
\leqq C_{5} C_{6}^{l} M_{i} e^{-\delta|\lambda|^{1 / m_{|x-y|}} \times} \times \begin{array}{ll}
|x-y|^{m-N} & \text { if } m<N \\
\left.|2|\right|^{N / m-1} & \text { if } m>N \\
1+\log ^{+}\left(|2|^{1 / m}|x-y|\right)^{-1} \\
\text { if } m=N
\end{array}
$$

Proof. The proof of this proposition is similar to [9].
We write (1.1)-(1.3) as an evolution equation in $L^{1}(\Omega)$:
(4.1) $d u(t) / d t+A(t) u(t)=f(t), \quad 0<t \leqq T$,
(4.2) $u(0)=u_{0}$.

Let $U(t, s)$ be the evolution operator of (4.1) which is a bounded operator valued function defined in $\bar{\Delta}$ satisfying

$$
\begin{array}{ll}
\partial U(t, s) / \partial t+A(t) U(t, s)=0 & \\
\partial U(t, s) / \partial s+U(t, s) A(s)=0 & (t s) \in \Delta \\
U(s, s)=I & 0 \leqq s \leqq T
\end{array}
$$

where $\Delta=\{(s, t): 0 \leqq s<t \leqq T$ and $\bar{\Delta}=\{(s, t): 0 \leqq s \leqq t \leqq T\}$. The existence of such an operator is known by [6].

Theorem. Under the assumptions stated above the
evoluion operator $U(t, s)$ of (4.1) is infinitely differentiable in $(s, t) \in \Delta$. There exist constants L_{0}, L such that

$$
\begin{aligned}
& \left\|(\partial / \partial t)^{n}(\partial / \partial t+\partial / \partial s)^{m}(\partial / \partial s)^{k}\right\|_{B\left(L^{1}, L^{1}\right)} \quad(s, t) \in \Delta \\
& \leqq \leqq L_{0} L^{n+m+k} M_{n+m+k}(t-s)^{-n-k}, \quad
\end{aligned}
$$

for $n, m, k=0,1,2, \cdots$.
According to [7] it suffices to prove the following Proposition 4.2. in order to establish the above Theorem.

Proposition 4.2. There exist positive numbers K_{0} and K such that

$$
\|\left.(\partial / \partial t)^{I}(A(t)-i)^{-1}\right|_{A\left(L^{1}, L^{1}\right)} \leqq K_{0} K^{t} M_{l} /|\lambda|
$$

for $l=0,1,2, \cdots$.
Proof. In view of Proposition 4.1. we obtain

$$
\begin{aligned}
& \int_{\Omega} \int_{0}\left|(\partial / \partial t)^{t} K_{\lambda}(x, y: t) f(y) d y\right| d x \\
& \leqq C_{5} C_{6}{ }^{I} M_{i} \int_{0} \int_{0} e^{-\left.\delta|1|\right|^{1 / m_{1 x}-y}}|x-y|^{m-N}|f(y)| d y d x \\
& \leqq C_{5} C_{6}{ }^{l} M_{i} \int_{\Omega} \int_{R^{N}} e^{-\left.s \delta \lambda\right|^{1 / n}|x-y|}|x-y|^{m-N} d x|f(y)| d y \\
& \leqq C_{5} C_{6}^{l} M_{1} \int_{0} \int_{0}^{\infty} e^{-\left.\delta|\lambda|^{1 / m_{1}}\right|_{r \mid} r^{m-N}} r^{N-1} d r|f(y)| d y \\
& =C_{5} C_{6}^{l} M_{l} \int_{0} \int_{0}^{\infty} e^{-\Delta \rho} \rho^{m-1} d \rho|\lambda|^{-1}|f(y)| d y \\
& =K_{0} K^{\prime} M_{i}\|f\|_{L^{1 /} / \lambda} \text { 기 }
\end{aligned}
$$

where $K_{0}=C_{5} e^{-\delta \rho}$ and $K=C_{6}$.

Bibliography

1. S. Agmon, On the eigenfunctions and on the eigenvalues of general elliptic boundary value problem, Comm. Pure Appl. Math. 15(1962), 119-147.
2. \qquad , Lectures on Elliptic Boundary Value Problem, D. Van Nostrand Company, Inc. Princeton, New Jersey, Tronto, New York, London, 1965.
3. R. Beals, Asymptotic behavior of Green's function and spectral function of an elliptic operator, J. Func. Anal. 5(1970), 484-503.
4. F.E. Browder, On the spectral theory of elliptic differential operators. I, Math. Ann. 142(1961), 22-130.
5. J. L. Lions and E. Magenes, Espaces de fonctions et distributions du type de Gevrey et problemes aux limites paraboliques, Ann. Mat. Pure Appl. 68(1965), 341-418.
6. D. G. Park, Initial-boundary value problem for parabolic equation in L^{1}, Proc. Japan Acad. 62(1986), 178-180.
7. H. Tanabe, On regularity of solutions of abstract differential equations of parabolic type in Banach space, J. Math. Soc. Japan 19(1967), 521-542.
8. \qquad , Equation of Evolution, Pitman, London, 1979.
9. \qquad , Functional Analysis II, Jikkyo Shuppan Publishing Company, Tokyo, 1981 (in Japanese).

Dong~A University
Pusan 604-714
Korea

Received April 5, 1988

