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MINMAX THEOREMS AND LOCAL
OPTIMIZATION PROBLEMS

JonGg YEouL PARk

In this paper, we prove the generalized minmax theorem
and by using of topological degree we prove the local
dotimization problem.

Lemma 1. Let X be a compact subset of a topological
vector space FE, Y be a convex subset of a topological
vectors space £ and let ' be a real wvalued function on
X XY satisfying:

(1) For each y &= Y, the function F(x,y) of x is upper
semicontinuous;

(2) for each x & X, the function F(x,y) of ¥ is convex;

(3) for any constant c, sup 13’2;1: Flx,y) <ec.

Then there exists a continuous mapping p of X into Y
such that F(x, p(x)) < c¢ for all x € X,

Proor. By (3), for every z & X there exists y. &Y
such that F(x,v.) <c¢. Setting

Ay, ={reX: F(z,y,) <c}

for each vy, & Y, thus we have X = {J A,_. Since X is

¥.EY

compact, there exists a finite family {31,52, 3=} such that
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X=_Zni A,. Let {B,B:-,B.} be a partion of unity corre-

sponding to this convering, i.e., each 8, is a continuous
mapping of X into [0,1] which vanishes outside of A,

17

while }) B: =1 for all £ & X. For each 7 such that

i=

Bi(x) =0, x lies in A, so that F(zx,y;) <c. Hence, we
have

¥ Bi(z)F(z, y)<c

i=1

for all x € X. Define a continuous mapping p of X into
Y by setting
p(a) =% Bx)y..

i=1

By convexity, we see that
F(z, p(@) = F(=, % Bi(=)3)
< 5 Bi@)Fla, ) <c

for all x & X. Thus, there exists a continuous mapping 2
of X into Y such that F(x, p(x)) <c for all z = X.

LEmMMA 2. Let Y be a compact subset of a topological
vector space E, X be a convex subset of a topological

vector space £ and let ¥ be a real valued function on
X X Y satisfying:

(1) For each y & Y the function F(x,y) of x is concave;
{2) for each x = X, the function F(x,¥) of ¥ is lower
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semicontinuous;

{3) for any constant ¢, inf suf F(x,¥y) >c.

yYEY xEX

Then, there exists a continuous mapping ¢ of ¥ into X
such that F(¢(3),y) >c for all y= Y.

Proor. Since Y is compact, there exists a finite family
”

{z),%5,-+,%,} such that ¥ = 01 C.,. Let {ry 7y, 7.} be a
=

partition of unity corresponding to this covering, 1.e.,
each 7, is a continuous mapping of X into [0,1] which

vanishes outside of C, while Z"; r;=1 for all y&Y.
:=1

For each 7, such that r(y) =0, y lies in C,. Soth=t
F(z;y) > c. Hence, we have

5 r(F(x, y) >¢

=1

-

for all y&= Y.

Define a continuous mapping q¢ of Y into X by setting
g(y) =X ri(y)z.

i=l

By concavity, we see that
F(a(3),») = F( & ri»zy)
2 5 )Pz, 9) >c

for all y& Y. Thus, there exists a continuous mapping ¢
of Y into X such that F(g(¥),y) >c forall y= Y.
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TueoREM 1. Let X and Y be compact convex subsets
each in a topological vector space and let F: XX Y — R be

a function satisfying :

(1) For each y= Y, F(x,y) is upper semicontinuous
and concave on X ;
(2) for each x € X, F(z,y) is lower semicontinuous

and convex on Y.
Then, we have

sup inf F(x,y) = inf sup F(x, y).
yeY 26X

2EX yEY
ProOF. Suppose that there exists a constant ¢ such that

sup inf F(x,y) <c < in}fr sup Fx, »).

IEY EX e

Then by Lemma 1, there exists a continuous mapping 2 of
X in to Y such that F(z, p(x)) <c¢ for all z € X and by
Lemma 2, there exists a continuous mapping ¢ of Y into
X such that F(g(y),y) >c¢ for all yE Y.

Let Z=XXY and define 2: ZXZ— R by

h((z,y) (¢(3), ¢(x)))
= (F(g(),y)—¢) N (c-F(z, p(x))

for all (x,y) € XxY. Then we see that

h((z,3), (2, 9))=(F(x,y)—¢c) N (c=F(z,3))
={0}.

Thus we have

Flzx,y) =c¢
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for all (x,¥) & XX Y. This is a contradictabove. Conse-
guently we have

sup inf F(x,»)=inf sup F(x,y).
1EX yEY yEV 1EX
LeEMMA 3. Let X be a compact subset of a topological
vector space E, Y be a convex subset of a topological
vector space E and let F be a real valued function on
X X Y satisfying:

(1) For each y € Y, the function F(x,¥) of x is upper
semicontinuous ;

(2) for each £ € X, the function F(z.v) of ¥ is quasi-
convex ,

(3) for any constantc, sup inf F(x,v) <ec.
z&X yEY

Then, there exists a continuous mapping p of X into Y
such that F(x, p(x)) <c¢ for allzx = X.

ProoF. The proof is similar of Lemma 1. But the property
of (2) we see that

F(z, p(x)) = F(x fjl B,(x)y;)
Smax (F(z,y)} <c
for all x € X. Thus, there exists a continuous mapping 2

of X into Y such that F(z,p(x)) <c for all z &€ X.

The proves of Lemama 4 and Theorem 2 are same method
of Lemma 2 and Theorem 1 respectively.

LeEMMA 4. Let Y be a2 compact subset of a topological
vector space E, X be a convex subset of a topological
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vector space E and let F be a real valued function on
X X Y satisfying:

(1) For each y & Y, the function F(x,¥)of £ is quasi-
concave,
(2) for each x &€ X, the function F(z,y) of ¥ lower
semicontinuous ;
(3) for any constant ¢, inf sup F(x,y) <ec.
YEY z&X
Then, there exists a continuous mapping ¢ of Y into X
such that F(g(¥),¥)>c¢ for all yE Y.

THeEOREM 2. Let X and Y be compact convex subset each
in a topological vector space and let F: XXY—R be a
function satisfying :

(1) For each y& Y, F(x,y) is upper semicontinuous and
quasiconcave on X,

(2) for each z € X, F(x,y) is lower semicontinuous and
quasiconvex on Y.

Then, we have

P e P ) =hal s F& .

DerinITION 1. Let D denote an open bounded set of R=,
2D its boundary, f a mappin from D inte R®* and
aER—f(@®D). If f is a C'(D)-mapping and C°(D)-
mapping,

deg( f,D,a) = % sign J(z),

xef~Itay
if
FHa) N Z=¢, with Z={xxJ{(x) = 0},
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Here, J;(x) is the Jacobian of f at the point z.

DEeFinITiON 2. Let { f.} denote a family of convex func-

tions on R”, depending on the parameter x e Q, where Q
is an open bounded subset of R". If there exists a con-
tinuous mapping

00— R* — {0}
and ¢ =0, such that

fx(P(x)) <fx(0)—55 Vx EaQ,

then we define

deg( f.) = deg( p,Q,0),

where p is a continuous extension of p to Q.

THEOREM 3. Let {f.} be a family of closed convex func-

tions, depending continuously on the parameter xe Q,
where Q is an open bounded subset of R If 0¢& 2 f,(0)

for all x&=3Q and deg(f.) #0, then there exists a
zy & 2, such that

Feo0) = inf S ().

yeR?
PrROOF. Assume that

deg( f.) #0 and £, (0) > i?f S (),

for all x & Q. Since 0¢ 2f.(0) for every x & 28, we have
FAO) >inf f.(y) for all z € Q. We denote the lower
¥

semicontinuous function g(x) = £.(0) — inf f,{(¥) > 0.
¥

Since

—

0 is compact, there exists a x, < Q such that g(z,) =



200 JonGg YeouL PARK

inf g(x) > 0. We take ¢(0 <e < g(x)). Then we have

icq

£0) > inf fi(3)+e

for all x & Q, which implies that
sup inf (f,(3)—Sfu(0)) < —-
P1=1+] ¥
By Lemma 1, there exists a continuous mapping p:Q —
R7"—1{0} such that
fx(?(x)) <f:(0) - &
By [2]
deg(‘f;):= deg(4P9£190) =:G

becaused Q¢ p(Q). This is a contraction Thus theorem
is complete.

DEFINITION 3. Let (E, F') be a dual system. and f: E— R
is a quasiconvex mapping. For any x,E £, the quasisu-
bgradient of f at x, is the set 3% f(x,) C F, defined by

x* € 9% f () if (x¥* x—x4) =0 then f(z) = f(xy).

THEOREM 4. Let { f,} be a family of closed quasiconvex

functions, depending continueusly on the parameter x € Q,
where { is an open bounded subset of R?. If 0 2*f.{0)
for all x €90 and deg (f,) #0, then there exists a
Zo &< Q, such that

Jo(0) = inf £ ().

yER"
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ProoF. By wusing of Lemma 3, {the method is same as
Theorem 3.
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