A STUDY ON SUBMANIFOLDS OF CODIMENSION 2 IN A SPHERE

YONG BAI BAIK AND DAE KYUNG KIM

1. Introduction

Let M be an n-dimensional compact connected and oriented Riemannian manifold isometrically immersed in an (n+2)-dimensional Euclidean space R^{n+2} . Moore [5] proved that if M is of positive curvature, then M is a homotopy sphere. This result is generalized by Baldin and Mercuri [2], Baik and Shin [1] to the case of nonnegative curvature, which is stated as follows: If M is of non-negative curvature, then M is either a homotopy sphere or diffeomorphic to a product of two spheres. In particular, if there is a point at which the curvature operator is positive, then M is homeomorphic to a sphere.

The purpose of this paper is to verify the following:

Theorem A. Let M be an $n(\geq 3)$ -dimensional compact connected and oriented Riemannian manifold isometrically immersed in an (n+2)-dimensional sphere $S^{n+2}(c)$. If all sectional curvature of M are not less than the positive constant c, then M is a real homology sphere.

2. Lemmas

Let V and W be real vector spaces of finite dimensions n and p respectively, and $B: V \times V \rightarrow W$ a symmetric bilinear form on V with values in W. Suppose $n \ge 2$ and W has an inner product \langle , \rangle . Define the associated curvature form $R_B: \Lambda^2 V \times \Lambda^2 V \rightarrow R$ by

(2.1) $R_B(x \wedge y, z \wedge w) = \langle B(x, z), B(y, w) \rangle - \langle B(x, w), B(y, z) \rangle$. Then R_B is again symmetric, and positive semi-definite iff $R_B(w, w) \geq 0$ whenever $w \neq 0$. Let K_B be the associated sectional curvature form

Received October 14, 1987.

This research is supported by Korean Science and Engineering Foundation 86-87.

defined by

$$(2.2) K_B(x, y) = R_B(x \wedge y, x \wedge y).$$

We say that K_B has positive semi-definite iff $K_B(x, y) \ge 0$ whenever $x \wedge y \ne 0$.

Consider the following conditions on B:

- (a) There exists an orthonormal basis $\{e_1, \dots, e_p\}$ for W such that real valued forms on V defined by $(x, y) \rightarrow \langle B(x, y), e_i \rangle$ are all nonnegative for the indices $i=1, \dots, p$.
- (b) R_B is positive semi-definite.
- (c) K_B is positive semi-definite.

The following Lemma was proved by Baik and Shin [1].

Lemma 1. $(a) \rightarrow (b) \rightarrow (c)$. In particular, if p=2, then the conditions are all equivalent.

Next, we define the curvature operator in a Riemannian manifold M. For a point x of M let R_x be an associated curvature form. A linear map ρ_x^* of $\Lambda^2 M_x$ into $\Lambda^2 M_x^*$ is defined by $u \wedge v \to R_x(\cdot, \cdot, u, v)$, where M_x^* denotes the dual space of the tangent space M_x at x. By this dual endomorphism, ρ_x of $\Lambda^2 M_x^*$ into itself is constructed. It turns out that ρ_x satisfies

(2.3) $\rho_x(u^* \wedge v^*) (w^* \wedge z^*) = \rho_x^* (u \wedge v) (w^* \wedge z^*) = R_x(u, v, w, z)$, for any vectors u, v, w and z in M_x , where u^* denotes the dual form in M_x^* associated with the vector u. The operator ρ_x is called a curvature operator at x of M. Since ρ_x is a symmetric operator, each eigenvalue of it is real. If all eigenvalues of ρ_x are contained in the closed interval $[\lambda, \Lambda]$, then one says $\lambda \leq \rho_x \leq \Lambda$, and if for any point x of M this property is satisfied, then $\rho(M)$ is said to satisfy the condition $\lambda \leq \rho(M) \leq \Lambda$, where $\rho(M)$ is the set consisting of all curvature operators at all points of M.

The following Lemma is due to Meyer [4].

Lemma 2. Let M be an n-dimensional compact and oriented Riemannian manifold. If all curvature operators satisfy the condition $\rho(M) > 0$, then M is a homology sphere.

3. Proof of Theorem A

Let i be an isometric immersion of M into the sphere $\overline{M} = S^{n+2}(c)$. For any point x of M we shall denote i(x) on \overline{M} by the same symbol x, since there is no danger of confusion and, moreover, the computation is local. Furthermore, a tangent vector u at x is identified with $di_x(u)$. Then the tangent space M_x at x is a subspace of the tangent space \overline{M}_x of ambient space \overline{M} at x. Let N_x be the orthogonal complement of M_x in \overline{M}_x , called a normal space to M at x, and let h be the second fundamental form of the immersion i.

Let R_B be the associated curvature form on M_x which is defined by (2.1) and K_B be the real valued map on $M_x \times M_x$ defined by (2.2). From (2.1) we get

(3.1) $R_B(u \wedge v, w \wedge z) = R(u, v, w, z) - c(\langle u, w \rangle \langle v, z \rangle - \langle u, z \rangle \langle v, w \rangle)$, where R denotes the Riemannian curvature tensor on M. Then we have

(3.2)
$$K_B(u, v) = (K(u, v) - c) (||u||^2 ||v||^2 - \langle u, v \rangle^2),$$

where K(u,v) is the sectional curvature of plane spaned by linearly independent vectors u and v on M_x . By the assumption of the Theorem it follows that $K_B \ge 0$. Thus, by the Lemma 1, the associated curvature form R_B satisfies $R_B \ge 0$. Hence the curvature operator ρ_x at x of M satisfies $\rho_x \ge c$ because of (2.3). Then we have $\rho(M) \ge c > 0$. By the Lemma 2, M is a real homology sphere. This concludes the proof.

Bibliography

- 1. Y.B. Baik and Y.J. Shin, On topological structure of a certain submanifold in R^{n+2} , Comm. Korean Math. Soc., 1(1986), 15-30.
- 2. Y. Y. Baldin and F. Mercuri, Isometrically immersions in codimension two with non-negative curvature, Math. Z., 173(1980), 111-117.
- 3. S. Bradi and C.C. Hsiung, Submanifolds of sphere, Math. Z., 115(1970), 235-251.
- 4. D. Meyer, Sur les varietes riemanniennes a operateur de courbure positif, C.R. Acad. Sci., Paris, 272(1971), 482-485.
- 5. J.D. Moore, Codimension two submanifolds of positive curvature, Pro. Amer. Math. Soc., 70(1978), 72-74.

Yong Bai Baik and Dae Kyung Kim

6. A. Weinstein, Positively curved n-manifolds in \mathbb{R}^{n+2} , J. differential Geometry, 4(1970), 1-4.

Hyosung Women's University Daegu 705-900, Korea and Keimyung University Taegu 704-200, Korea