ISOTROPY REPRESENTATIONS OF CYCLIC GROUP ACTIONS ON HOMOTOPY SPHERES

Dong Your Suh

1. Introduction

Let Σ be a smooth compact manifold without boundary having the same homotopy type as a sphere, which is called a homotopy sphere. Suppose a group G acts smoothly on Σ with the fixed point set Σ^G consists of two isolated fixed points p and q. In this case, tangent spaces $T_p\Sigma$ and $T_q\Sigma$ at isolated fixed points, as isotropy representations of G are called Smith equivalent. Moreover Σ is called a supporting homotopy sphere of Smith equivalent representations $T_p\Sigma$ and $T_q\Sigma$.

The study on Smith equivalence has rich history, and for this we refer the reader to [P] or [Su]. The following question of P. A. Smith [S] motivates the study on Smith equivalence.

QUESTION. Does Smith equivalence imply equivalence of representations?

In this paper we consider the question for cyclic group of order 2d where d is odd. Let $G=Z_{2d}$ be the cyclic group of order 2d where d is odd. Let H be the index 2 subgroup. Thus H is the cyclic group of odd order. The main results are as follows:

Theorem A. Suppose V and W are Smith equivalent representations of G. If H is an isotropy subgroup of either V or W, then V and W are equivalent.

An easy corollary is as follows:

COROLLARY B. Any odd dimensional homotopy sphere can not support non equivalent Smith equivalent representations.

Received November 20, 1987.

Note that if $G=Z_{4n}$ with $n\geq 2$, Cappell-Shaneson [CS], Petrie [P], and Dovermann [D] show that there exist non-equivalent Smith equivalent representations. There the index 2 subgroup H appears as an isotropy subgroup and such fact is used in essential ways.

2. Proof of Main Results

Suppose V and W are Smith equivalent representations of G. Let the index 2 subgroup H be an isotropy subgroup of one representation, say V. Let Σ be a supporting homotopy sphere of Smith equivalent representations V and W. Consider the fixed point set $\Sigma^H = \{x \in \Sigma \mid hx = x \text{ for all } h \in H\}$. Then $G/H \cong Z_2$ act smoothly on Σ^H with the fixed point set $(\Sigma^H)^{G/H} = \Sigma^G = \{p, q\}$.

We claim that p and q are in a same connected component of \sum^{H} . Suppose not. Let the connected component of \sum^{H} containing p be X(p). Then X(p) is a Z_2 smooth manifold with the fixed point set $X(p)^{Z_2} = \{p\}$. Let

$$f: X(p) \longrightarrow S(T_p X(p) \oplus R) = Y$$

be the map which collapses outside of small neighborhood of p in X(p) to a point.

Then f is a Z_2 map of degree 1. At this point we need the following result of Bredon [Theorem 5.1, B]

Lemma 2.1. Let X and Y be smooth orientable manifolds with Z_p action for prime p. Let $f: X \rightarrow Y$ be an Z_p equivariant map of non-zero degree (mod p). Then the induced homomorphism

$$H^*(Y^G, Z_b) \longrightarrow H^*(X^G, Z_b)$$

is a monomorphism.

From lemma 2.1

$$f^*: H^0(Y^{\mathbb{Z}_2}, \mathbb{Z}_2) \longrightarrow H^0(X(p)^{\mathbb{Z}_2}, \mathbb{Z}_2)$$

is a monomorhpism. This is impossible because Y^{Z_2} consists of two points while $X(p)^{Z_2}$ consists of a single point. We thus have proved that p and q are in a same connected component of \sum^{H} .

For any representation V of G and any subgroup K of G, $res_K V$ is the representation V restricted to K. Since p and q are in the same

Isotropy representations of cyclic group actions on homotopy spheres

connected component of Σ^H representation $res_H V$ and $res_H W$ are equivalent. For the next step we need the following classical result of Smith.

Lemma 2.2. If G is a p-group and G acts on a homology sphere X, then $\sum_{i=1}^{G} S_i = \sum_{i=1}^{G} S_i + \sum_{i=1}^{G} S_i = S_i$

From lemma 2.2 $\sum_{z_2}^{z_2}$ is a z_2 homology sphere. In particular, $\sum_{z_2}^{z_2}$ is connected. Thus

$$V^{Z_2} = (T_p \sum)^{Z_2} = T_p(\sum^{Z_2}) = T_q(\sum^{Z_2}) = (T_q \sum)^{Z_2} = W^{Z_2}$$

as a representation of $H\cong G/Z_2$. The following lemma proves theorem A.

Lemma 2.3. Let V and W be two real representations of $G=Z_{2d}$, d is odd, such that $V^G=W^G=0$. If $res_HV=res_HW$ and $V^Z_2=W^Z_2$, then V=W.

Proof. Let t^i be a complex 1-dimensional repesentation of $G=Z_{2d}=\{g^k|k=0,1,\cdots,2d-1,\ g=\exp{2\pi/2d}\}$ such that $g^k(z)=g^{ki}\cdot z$ for $z\in t^i=C$. Let \tilde{t}^i be the realification of t^i . Then \tilde{t}^i is an irreducible real representation of G if $i\neq 0$, d. It is easy to see that $\tilde{t}^i=\tilde{t}^{2d-i}$ for all i. Let R_- be the irreducible real 1-dimensional representation of G such that $g^k\cdot x=(-1)^k x$ for $g^k\in G$, $t\in R_-$. Then $\{\tilde{t}^1,\cdots,\tilde{t}^{d-1},R_-\}$ is the set of all irreducible real representations of G and any real representation V with $V^G=0$ can be written $V=\sum_{i=1}^{d-1}a_i\tilde{t}^i+a_dR_-$.

Let $V = \sum_{i=1}^{d-1} a_i \tilde{t}^i + a_d R_ W = \sum_{i=1}^{d-1} b_i \tilde{t}^i + b_d R_-$

Since $res_H V = res_H W \ a_i + a_{d-i} = b_i + b_{d-i}$ for all $i = 1, \dots, d-1$ and $a_d = b_d$. On the other hand

$$V^{Z_2} = a_2 \tilde{t}^2 + a_4 \tilde{t}^4 + \dots + a_{d-1} \tilde{t}^{d-1}$$

 $W^{Z_2} = b_2 \tilde{t}^2 + b_4 \tilde{t}^4 + \dots + b_{d-1} \tilde{t}^{d-1}$

Since $V^{Z_2} = W^{Z_2}$ as a G/Z_2 representation $a_{2k} = b_{2k}$ for all $k=1, \dots, (d-1)/2$ $a_i = b_i$ for all $i=1, \dots, d$, which proves the lemma.

Proof of Corollary B. If Σ is an odd dimensional homotopy sphere supporting Smith equivalent representations V and W, $\dim V = \dim W$

Dong Youp Suh

is odd. Since V and W can not contain the trivial representation as a subrepresentation V and W must contain R_- as an irreducible subrepresentation. But if this happens, clearly H is an isotropy subgroup of V and W. Thus the corollary follows from theorem A.

References

- B. G. Bredon, Fixed point set of actions on Poincaré duality spaces, Topology 12 (1973), 159-175.
- CS. S. Cappell and J. Shaneson, Fixed points of periodic differentiable maps, Invent. Math. 68 (1982).
- D. K.H. Dovermann, Even dimensional Smith equivalent representations, Algebraic Topology Conf. Aarhus, Springer-Verlag LNM 1051 (1982).
- P. T. Petrie, Smith equivalence of representations, Proc. Cambridge Philo. Soc. 94 (1983).
- S. P.A. Smith, New results and old problems in finite transformation groups, Bull. AMS 66 (1960), 401-415.
- Su. D. Y. Suh, Smith equivalence of representations, Thesis, Rutgers Universityty (1984).

Korea Institute of Technology Taejeon 302–338, Korea