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ISOTROPY REPRESENTATIONS OF CYCLIC GROUP
ACTIONS ON HOMOTOPY SPHERES

Doxsg Your Sun

1. Introduction

Let 25 be a smooth compact manifold without boundary having the
same homotopy type as a sphere, which is called a homotopy sphere.
Suppose a group G acts smoothly on Y, with the fixed point set Y€
consists of two isolated fixed points p and g. In this case, tangent
spaces T,2; and T, X at isolated fixed points, as isotropy representations
of G are called Smith equivalent. Moreover Y is called a supporting
homotopy sphere of Smith equivalent representations T,2 and T,3.

The study on Smith equivalence has rich history, and for this we
refer the reader to [P] or [Su]. The following question of P.A.
Smith [S] motivates the study on Smith equivalence.

QuestioN. Does Smith equivalence imply equivalence of representat-
1 ?
ions?

In this paper we consider the question for cyclic group of order 24
where d is odd. Let G=Z,; be the cyclic group of order 2d where d
is odd. Let H be the index 2 subgroup. Thus K is the cyclic group
of odd order. The main results are as follows:

Tueorem A. Suppose V and W are Smith equivalent representations of
G. If H is an isotropy subgroup of either V or W, then V and W are

equivalent.
An easy corollary is as follows:

CoroLLarY B. Any odd dimensional homotopy sphere can not support
non equivalent Smith equivalent representations.
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Note that if G=2,, with n>2, Cappell-Shaneson [CS], Petrie [P],
and Dovermann [D] show that there exist non-equivalent Smith

equivalent representations. There the index 2 subgroup H appears as
an isotropy subgroup and such fact is used in essential ways.

2. Proof of Main Results

Suppose V and W are Smith equivalent representations of G. Let
the index 2 subgroup H be an isotropy subgroup of one representation,
say V. Let 2. be a supporting homotopy sphere of Smith equivalent
representations V' and W. Consider the fixed point set NH= {z& J]
tha =z for all heH}. Then G/H=Z, act smoothly on ¥ with the
fixed point set (LH)C/H=736G={p, g} .

We claim that p and ¢ are in a same connected component of X4,
Suppose not. Let the connected component of Y,# containing p be
X(p). Then X(p) is a Z, smooth manifold with the fixed point set
X(p)%=1{p}. Let

1 X(p)—S(T,X(p)DBR)=Y
be the map which collapses outside of small neighborhood of p in
X(p) to a point.
Then f is a Z, map of degree 1. At this point we need the following
result of Bredon [Theorem 5.1, B]

Lemma 2.1. Let X and Y be smooth orientable manifolds with Z,
action for prime p. Let f: X—Y be an Z, equivariant map of non—zero
degree (mod p). Then the induced homomorphism

H*(YC, Z,) —> H*(XC, Z,)

is a monomorphism,

From lemma 2.1
F* 1 HO (Y%, Zy) —> HY(X(p)?2, Zy)
is a monomorhpism. This is impossible because Y?Z: consists of two
points while X (p)?2 consists of a single point. We thus have proved
that p and ¢ are in a same connected component of 3 H.

For any representation V of G and any subgroup K of G, resgV is
the representation V restricted to K. Since p and ¢ are in the same
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connected component of >H representation res;V and resy W are
equivalent. For the next step we need the following classical result of

Smith.

Lemva 2.2, If G is a p—group and G acts on a homology sphere X,
then 2.° is a Z, homology sphere.

From lemma 2.2 Y% is a Z; homology sphere. In particular, 2%
is connected. Thus
Vo= (T 2)52=T (%) =T (L%2) = (T, 20) 2= W2
as a representation of H=G/Z, The following lemma proves theorem

A.

Lemva 2.3, Let V and W be two real representations of G=1Zs; d
is odd, such that VC=W6C=0. If resyV=resyW and VZ2=W?%2, then
V=W.

Proof. Let ¢ be a complex 1-dimensional repesentation of G=2Z,;=
{g*| k=0, 1, -++, 2d —1, g=exp 2r/2d} such that gt(z) =g* -z for ze¢i=
C. Let 7% be the realification of #. Then # is an irreducible real
representation of G if i#0, d. It is easy to see that =724 for all
i. Let R. be the irreducible real 1-dimensional representation of
G such that gt-a=(—1)*z for gt€G,tcR_. Then (-, 79 L R} is

the set of all irreducible real representations of G and any real
d-1

representation V with Vé=0 can be written V=X a;f+a;R. .
il

d-1
Let V=2Xati+asR._
il

W= b7+ bR
Since resgV=resyW a;+ay_;=b;+b,._; for all i=1, ---,d—1 and a;=b,.
On the other hand
Vir=a 2+ adt+ - +ay 971
W2 =24 byt + e +by_yF4~1
Since VZ:=W?2: as a G/Z, representation asu=by for all k=1, .-,
(d—1)/2 a;=b; for all i=1, ---, d, which proves the lemma.

Proof of Corollary B. If 3] is an odd dimensional homotopy sphere
supporting Smith equivalent representations V and W, dimV=dim W
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is odd. Since V and W can not contain the trivial representation as a
subrepresentation V and W must contain R_ as an irreducible
subrepresentaion. But if this happens, clearly H is an isotropy
subgroup of V and W. Thus the corollary follows from theorem A.
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