FIXED POINT ALGEBRAS OF UHF-ALGEBRAS*

CHANG HO BYUN**, SUNG JE CHO*** AND SA GE LEE***

1. Introduction

In this paper we study a C^* -dynamical system (A, G, α) where A is a UHF-algebra, G is a finite abelian group and α is a *-automorphic action of product type of G on A. In [2], A. Kishimoto considered the case $G=Z_n$, the cyclic group of order n and investigated a condition in order that the fixed point algebra A^{α} of A under the action α is UHF. In later N. J. Munch studied extremal tracial states on A^{α} by employing the method of A. Kishimoto [3], where G is a finite abelian group. Generally speaking, when G is compact (not necessarily discrete and abelian), A^{α} is an AF-algebra and its ideal structure was well analysed by N. Riedel [4].

Here we obtain some conditions for A^{α} to be UHF, where G is a finite abelian group, which is an extension of the result of A. Kishimoto.

2. Notations and preliminaries

Let G be a finite abelian group and K_n , $n \in \mathbb{N}$ be matrix factors of rank $|K_n|$. Consider unitary representations $\pi_n : G \to K_n$ and define the homomorphism α of G into the group of all *-automorphisms of $A = \bigotimes_{n=1}^{\infty} K_n$ by $\alpha_g = \bigotimes_{n=1}^{\infty} A d\pi_n(g)$.

Put $W_g^{n,m} = \bigotimes_{i=n}^m \pi_i(g)$, $n \leq m$. Since $W^{n,m}$ is a unitary representation of G into $\bigotimes K_i^m$, we obtain a spectral decomposition $W_g^{n,m} = \sum_{\mu \in G} \mu(g) E_\mu^{n,m}$, where $E_\mu^{n,m}$ are projections in $\bigotimes_{i=n}^m K_i$ and \hat{G} is the character group

Received November 23, 1987.

^{*}Partially supported by a grant from KOSEF, 1985-88.

of G, considering the irreducible decomposition of $W^{n,m}$. Note that $E_{\mu}{}^{n,m} = \sum_{\nu \in G} E_{\mu-\nu}^{n,s} \otimes E_{\nu}{}^{s,m}$ for $n \leq s \leq m$ by uniqueness of irreducible decomposition. Also note that $E_{\mu}{}^{n,m} = |G|^{-1} \sum_{g \in G} \mu(g) W_g{}^{n,m}$, where |G| denotes the order of G.

We assume that α_g is outer whenever $g \neq e$, the identity of G. Also we may assume all $E_{\mu}^{m,n}$ to be non zero as same as in [3]. By [1, 3, 4], $A^{\alpha} = \{x \in A : \alpha_g(x) = x \text{ for all } g \in G\}$ is equal to $(\bigcup_{n=1}^{\infty} A_n^{\alpha})^{-}$ where $A_n = \bigotimes_{i=1}^{n} K_i$ and C denotes the norm closure. Put $A_{\mu}^{n} = E_{\mu}^{1,n} A_n E_{\mu}^{1,n}$ for $\mu \in \hat{G}$. Then A_{μ}^{n} is a matrix factor and $A_n^{\alpha} = \sum_{\mu \in \hat{G}} \bigoplus A_{\mu}^{n}$. Therefore A^{α} is an AF-algebra (See [1]).

Let τ be a canonical trace on the UHF-algebra A, that is, $\tau = \bigotimes_{i=1}^{\infty} |K_i|^{-1} Tr$, where Tr is the usual trace on the matrix algebra K_i . Describing the structure of the AF-algebra A^{α} , we must know how A_{ρ}^{n} is partially embedded into A_{μ}^{n+1} for ρ , $\mu \in \hat{G}$. By [3, Lemma 2.1] its multiplicity is

(2.1)
$$|K_{n+1}| \tau(E_{\mu-\rho}^{n+1,n+1}).$$

Let $B(l^2(G))$ be the algebra of all operators on $l^2(G)$. We define a regular representation λ of G on $l^2(G)$ by

$$(\lambda(g)\xi)(h) = \xi(h-g)$$
 for $g, h \in G, \xi \in l^2(G)$.

B denotes the UHF-algebra $\bigotimes_{n=1}^{\infty} B(l^2(G))$, i.e., the infinite tensor product of copies of $B(l^2(G))$ with type $|G|^{\infty}$. Also we define the action β of G on B such that $\beta_g = \bigotimes_{n=1}^{\infty} Ad\lambda(g)$ for all $g \in G$.

3. Main result

Lemma. The fixed point algebra B^{β} is *-isomorphic to B.

Proof. By (2.1), we know the multiplicity of partial embedding of B_{ρ}^{n} into B_{μ}^{n+1} for ρ , $\mu \in \hat{G}$ as follows,

$$|B(l^{2}(G))|\tau(E_{\mu-\rho}^{n+1,n+1}) = Tr(|G|^{-1}\sum_{g \in G} (\mu-\rho)(g)\lambda(g))$$

$$= |G|^{-1}\sum_{g \in G} \mu(g)\overline{\rho(g)}Tr(\lambda(g)) = 1$$

since $Tr(\lambda(g)) = |G|\delta_{g,e}$, where δ is the Kronecker's delta. Hence the Bratteli diagram for B^{β} is isomorphic to that of B [1].

We give a condition for the fixed point algebra A^{α} of a UHF-algebra A by the product type action α of a finite abelian group G to be UHF, which is a generalization of the result of A. Kishimoto [2].

Theorem. Let (A, G, α) be a C^* -dynamical system as in section 2. Then the followings are equivalent:

- (i) A^{α} is a UHF-algebra.
- (ii) A^{α} is *-isomorphic to A.
- (iii) A is *-isomorphic to $C \otimes B$ for some UHF-algebra C and α is conjugate to $id \otimes \beta$, where id is the identity automorphism of C.
- (iv) There exists an increasing sequence $\{n_k : k=1, 2, ...\}$ of non negative integers such that $n_1=0$ and $\tau(E_{n-1}^{n_k+1,n_{k+1}})=|G|^{-1}$ for all $u, \rho \in \hat{G}$, all k.

Proof. By the above lemma, implications (iii) \rightarrow (ii) \rightarrow (i) are obvious.

We will prove that (i) implies (iv). Since $A^{\alpha} = (\bigcup_{n=1}^{\infty} A_n^{\alpha})^{-}$ is a UHF-algebra, there exist an increasing sequence $\{B(k): k=1, 2, ...\}$ of matrix factors and $\{n_k: k=1, 2, ...\}$ of non negative integers such that $A_{n_k}{}^{\alpha} \subset B(k) \subset A_{n_k}{}^{\alpha}$

(see [1] 2.5). Let a_{ρ}^{k} (resp. b_{ρ}^{k}) be the multiplicity of partial embedding of $A_{\rho}^{n_{k}}$ into B(k) (resp. B(k) into $A_{\rho}^{n_{k+1}}$). Then the multiplicity of partial embedding of $A_{\rho}^{n_{k}}$ into $A_{\mu}^{n_{k+1}}$ is $a_{\rho}^{k}b_{\mu}^{k}$ and

(3.1)
$$a_{\rho}^{k}b_{\mu}^{k} = \prod_{i=n_{k+1}}^{n_{k+1}} |K_{i}| \tau(E_{\mu-\rho}^{n_{k+1}, n_{k+1}}).$$

Now we have

$$\begin{split} \sum_{\boldsymbol{\rho} \in \hat{G}} a_{\boldsymbol{\rho}}^{\,k} b_{\boldsymbol{\mu}}^{\,k} &= \prod_{i=n_k+1}^{n_{k+1}} |K_i| \sum_{\boldsymbol{\rho} \in \hat{G}} \tau \left(\sum_{g \in G} |G|^{-1} (\boldsymbol{\mu} - \boldsymbol{\rho}) \left(g \right) W_g^{\,n_k+1,\,n_{k+1}} \right) \\ &= \prod_{i=n_k+1}^{n_{k+1}} |K_i| \, |G|^{-1} \sum_{g \in G} \tau \left(W_g^{\,n_k+1,\,n_{k+1}} \right) \mu(g) \sum_{\boldsymbol{\rho} \in \hat{G}} \boldsymbol{\rho}(g) \\ &= \prod_{i=n_k+1}^{n_{k+1}} |K_i| \, |G|^{-1} \sum_{g \in G} \tau \left(W_g^{\,n_k+1,\,n_{k+1}} \right) \mu(g) \, |G| \, \delta_{g,\,e} \\ &= \prod_{i=n_k+1}^{n_{k+1}} |K_i| \, . \end{split}$$

Similarly $\sum_{\mu \in \hat{G}} a_{\rho}^{k} b_{\mu}^{k} = \prod_{i=n_{k}+1}^{n_{k+1}} |K_{i}|$. Hence a_{ρ}^{k} (resp. b_{μ}^{k}) is independent for $\rho \in \hat{G}$ (resp. $\mu \in \hat{G}$). We put $a_{\rho}^{k} = a_{k}$ ($b_{\mu}^{k} = b_{k}$) for all $\rho \in \hat{G}$ ($\mu \in \hat{G}$). Therefore we have $a_{k}b_{k} = \prod_{i=n_{k}+1}^{n_{k+1}} |K_{i}| |G|^{-1}$ i. e., $\tau(E_{\mu-\rho}^{n_{k}+1,n_{k+1}}) = |G|^{-1}$ for all $\mu, \rho \in \hat{G}$ since of (3.1), proving (iv).

Next we suppose (iv). Then we have for all $\mu \in \hat{G}$, $\tau(E_{\mu}^{n_{k}+1, n_{k+1}}) = |G|^{-1}$, which implies for all $g \in G$

$$\tau(W_g^{n_k+1, n_{k+1}}) = \tau(\sum_{\mu \in G} \mu(g) E_{\mu}^{n_k+1, n_{k+1}}) = |G|^{-1} \sum_{\mu \in G} \mu(g) = \delta_{g, e}.$$

Hence we know the character's identity

(3.2)
$$Tr(W_g^{n_k+1,n_{k+1}}) = \prod_{i=n_k+1}^{n_{k+1}} |K_i| |G|^{-1} Tr(\lambda_g),$$

where Tr denotes the usual trace of $\bigotimes_{i=n_k+1}^{n_{k+1}} K_i$ or $B(l^2(G))$. C_k denotes the matrix factor of dimension $\prod_{i=n_k+1}^{n_{k+1}} |K_i| |G|^{-1}$. By (3. 2) there exists a *-isomorphism ϕ_k of $\bigotimes_{i=n_k+1}^{n_{k+1}} K_i$ onto $C_k \otimes B(l^2(G))$ and $AdW_g^{n_k+1, n_{k+1}} = \phi_k^{-1}$ $(id \otimes Ad\lambda_g)\phi_k$ for all $g \in G$ where id is the identity automorphism of C_k . Put $C = \bigotimes_{k=1}^{\infty} C_k$, a UHF-algebra and $\phi = \bigotimes_{k=1}^{\infty} \phi_k$, a *-isomorphism of A onto $C \otimes B$ (identifying $C \otimes B$ and $\bigotimes_{k=1}^{\infty} (C_k \otimes B(l^2(G)))$). Then we have $\alpha_g = \phi^{-1}(id \otimes \beta_g)\phi$ for all $g \in G$, which proves (iii).

References

- O. Bratteli, Inductive limits of finite dimensional C*-algebras, Trans. Amer. Math. Soc., 171 (1972), 195-234.
- A. Kishimoto, On the fixed point algebra of a UHF algebra under a periodic automorphism of product type, Publ. RIMS. Kyoto Univ., 13 (19 77), 777-791.
- 3. N. J. Munch, The fixed point algebra of tensor product actions of finite abelian groups on UHF-algebras, J. Func. Anal., 52 (1983), 413-419.
- 4. N. Riedel, Remarks on the fixed point algebras of tensor product type action, Mh. Math., 89 (1980), 235-242.

Fixed point algebras of UHF-algebras

- ** Chonnam National University Kwangju 500-757, Korea and
- *** Seoul National University Seoul 151–742, Korea