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GALERKIN APPROXIMATIONS OF RICCATI OPERATORS
ARISING IN THE BOUNDARY CONTROLS FOR
HYPERBOLIC SYSTEMS

Sune Kac Cuaneg*

1. Introduction

In [2], we have shown that the optimal boundary controls for
hyperbolic systems in L2-spaces can be attained in a feedback form
via Riccatl operators.

A number of authors [1, 5, 7 and 10] have investigated approximations
of Riccati operators arising in distributed parameter systems. They
assumed bounded controls for parabolic systems.

However, we in this paper study Galerkin approximations of Riccati
operators and feedback controls for hyperbolic systems with unbounded
control actions.

Let us briefly introduce some results of [2].

Let Q be an open bounded region in R* with smooth boundary I
where » is a fixed positive integer. We consider a strictly hyperbolic
differential operator H(z) of order 1 on 2 with noncharacteristic
boundary on I':

H(z) :éAi (2) @%Jrc (2)

where A; and C are mXm matrix valued smooth functions on the
closure Q.
We also assume that the normal matrix N(x) at x in I"is of following
block diagonal form:
N~ (x) 0 ]

(1.1 N@=a@u@=" D

for the unit normal vector (m (2),...,n,(z)) at z in I where —N~(z)
and N*(z) are positive definite and smooth matrix valued functions
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on I with rank (N7)=r and rank (N*)=n—r
A boundary operator 8(z) on I' is assumed as
(1.2) B(x)=[1I, : M(z)] where I, is the identity matrix of order
r and M(z) is a rX (m—r) matrix valued smooth function on 7.
Let us consider a hyperbolic mixed problem:

%%ﬂg:1@@)+f@) on (0, T)XR=Q
(1.3) [ By(®) =u(?) on (0, T)YXI'=3,
y(0) =y, on O

for £ in L@ ; R™), » in L2(X ; R") and ¢ in L2(Q ; R7).
Then we have from [9],

Tueorem 1,1, The system (1.3) is well posed in the sense of Kreiss.
For simplicity, we let f=0 in (1.3) and we denote that L*(Q) =L2(Q ;
Rm), L2(2)=L?*(2 ; R") and L*(Q)=L2%2(Q ; R™) etc with norms and

inner products |- llg, |11z, |- la and (., Do, (v 05 (. g ete respectively.

Let us define an operator A as

1.4) Ay=Hy for y in Dom(4)

where Dom(A4) = {ye L?(Q) |Hye L*(2) and By=0 on P}
Then from theorem 1.1, it is known that A generates a strongly
continuous semigroup S(¢) on L?(2). In order to represent the system
(1.3) in an integral form we need to introduce a Dirichlet operator

D on L2(I") as
.. [Hz=kz on Q
(1.5) Du=¢ lf{ﬁz:u on I

for some fixed large constant &.
Then we have shown in [2],

Lemva 1.2. D is a bounded linear operator of L2(I') into L*(Q)
for a large constant k. Moreover we have
1.6) [ ID*Ar—)S* W slide<dlizll for all z€L2(Q),

(1.7) D*(A*—R)y=N"y on I' for y in Dom(A*), where ¢ is a
constant depending on T and y=(y™ ; y*) with
y = (yly -~-yr) and y+: (yr+l, seay ymj}-

For simplicity, we also assume £2=0 by translating C(x) in (1.5).
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We define an operator L on L2(X): for u in L2(}))
(L) () =4[ ;s (t—s) Du(s)ds, t€[0, T].
In [2], we have

b

Turorem 1.3. L is a bounded linear operator of L2(3) into C([0, T];
L*(Q)). Moreover the solution of (1.3) is given by y(t) =S(t)yo— (Lu)
), t<[0, T].

We consider an optimal control problem:

(OCP) Minimize the cost functional

I (v, w) =llully*+<{Fy, 3o +{Gy(T), y(T))o over u in L2(3}) subject
to the dynamic system (1.3) where F and G are given positive self—
adjoint bounded linear operators on L2(Q).

According to [2], (OCP) has a unique optimal control #° in L2
(23) and the corresponding solution 3 in C([0, T'] ; L?(R)). Further-
more, «° is given in the following feedback form:

(1.8) ut(#) = —D*A*R () ¥°(t), a.e. ¢t in [0, T]
where R(#) is a suitable positive self adjoint Riccati operator on
L2(0).

We have shown in [2] the following regularizations: Let F, and
G, be positive self adjoint bounded operators on L2(2) with ranges
of them in Hy1(®) such that

(1.9) F,——F and G,—>G strongly on L2(Q) as n—>co.

Lemma 1.4. The Riccati equation:
(RDE) L (R, 9a=—(Fa, 3a— (A*Ro(D, )

—(R, () Az, y)o+{(D*A*R,(t) x, D*A*R,(t) »)
with R,(T)=G,, for z,y in Dom(A) and a.e. tin [0,T], has a
unique positive self-adjoint bounded operator solution R,(t) on L2(Q) for
each n.

Let u,(t)=—D*A*R,(t) v, (t), 0<¢<T.
Then we have from [2] the following convergences.

THEOREM 1. 5.
(1) IID*A*R,(®)=ll;<cllzllg for z in L2(Q), 0<¢<T,
(i1) R,(¢) —> R(¢) strongly in L2*(Q) as n —> oo,
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(i) a, —>«® in L2(3}) as n—— > ca,

(V) 9,(@) ~~—>3°@) in L2(Q) as n——> oo,
where y,(t) is the solution of (1.3) corresponding to the control u,(t)
for each n,c is a constant depending on T.

In section 2, we introduce semidiscrete Galerkin approximations to
the open loop control systems and investigate some stability properties
of the approximations.

We then in section 3 consider finite dimensional Riccati feedback
controls resulted from finite element type approximations. In the main
theorems, the convergences of finite dimensional feedback controls and

corresponding solutions to the original optimal control and solution
respectively are given.

2. Semidiscrete Galerkin approximations and stability results

We here introduce finite dimensional spline spaces W, (of order >
1) of L?(R) where & is a discretization parameter as follows.

Let P, be the orthogonal projection of L2(Q) onto W; A>0. We
assume that W) are contained in H1(Q) and satisfy the next:

(AP1) Piz ——z in L2(Q) as h—> 0 for z in L2(Q).

(AP2) Ppz ——> =z in HY(Q) as h——> 0 for = in H1(Q),

(AP3) lzllr<eo(+ B)Hzllg for = in HY(Q),

(AP4) [ Prz =21 <cohllzllpzeppfor = in H2(Q)
where ¢; is a constant independent of A>0.
We also assume that the domain Dom(A*) is invariant under P,.
Now we are in a position to define the finite dimensional operators
A, A3F as follows:

@1 (Apz, wyo=<Hz, w)o+{Bz, N w), for w,z in W,
That is, (2.1) is equivalent to

(2.2) {Apz, wy o= (Hz, w)g+ (™ + Mz*, N"w™),
for 2= (" ; 2", w=(w™ ; w*) in W
By duality, we define

2.3) CAp*z, wyo=(H*z, wyy—(N"2", w™) + (N2, Mwty,
for w,z in W), where H* is the formal adjoint of H.
Then A, and A,* generate strongly continuous semigroups, say S,(¢)
and S3*(z) respectively, on W,
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Next we define L, as

(2. 4) (L) () :ﬁ)shg—s) P,(AD)u(s)ds for u in L2(%).
Then we obtain the following:

Lemma 2.1. For 0<¢t<T and z in W),

(1) ISy =llo=<cllzllo and
(D) 18, () zllo<cllzlly where ¢ is a constant depending on T.

Proof. Let z(¢£)=83(t)z for z in W, and let

R:[é’ ]0 ] be a nXn matrix where 6>0 and e>0.

We use a simple symmetrizer technique in next:
From (2.2), we have for a.e. ¢ in [0, T]

(2.5) <d 2(2), Rz(£))p= (), Rz() )0
=(Hz(t), Re(t))o+de(8), N"z™ (1)), +0{Mz" (), N™=" ())r
As in [2] using Green’s formula, we have

(2.6) (Hz(2), Rz(t)>p<-'<Nz(t) Rx(8))r+dllz(®) 2
for some constant d depending on T.

From (2.5) and (2.6), we obtain
@7 LG, R N (0,5 (D)=

edN*tzt (@), 2" ())p+20{z" (), N7z7())p+
20{Mz* (£), N"z~ (1)) +2dlz(2) ll¢.
Since —N- and N* are positive definite on ', by taking d and ¢
suitably in (2.7) we have

o< —allz (@) ]2+8llz(£) ||g? for some constants a and 5>>0.

Thus by Gronwall inequality, we have
(2.8) le@llot+ [ 112, %ds < Hlslig?s 0:<e<T

for some constant £>0. This shows part (i).
By the similar way, we can show that

@9 18 @l [ I15* @zl de<Hizlz, 0<e<T.
This completes the proof.
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From (2.8) and (2.9) we have
CoroLLARY 2.2. For u in L2(Y)) and 0<t< T,

1(Lpw) ()12 < llcully where ¢ is a constant depending on T.
Now we obtain the following convergences:

THEOREM 2.3. As h —— (),
(1) Sp(t)Phz——> S(t)z and
S* (D) Prz——>8* () z in C([0), T] 5 L2(Q)) for = in L2(Q),
(i) (Lyw) () —— > (Lu) () in L2(Q) for u in L2(X) and
Ly*Pyf ——> L*f in L2(3) for f in L2(Q),
(ili) D*A*S,*(¢) Ppe—->D*A*S* ()2 in L2(I) for = in H (D).
Proof. Yor (i), we prove the second part since the first part can
be followed similarly.
Let ry(8) =8,* (t) Ppz—PuS*(¢) 2 for 2 in L2(Q) and 0<t<T.
Then r,(¢) is in HY(Q) for # in Hy' () by Rauch [97.
Since Dom(A*) is invariant under P,, we obtain for z in Hy ()

L0, R0

=4 (), Rry() >+ (H*(Py—D8* ()2, Rry(t)do
={H i (8), Rry(0))o—e(NTry* (1), r (DD p+-edN"7,~ (), Mry* (£))r
+{H* (Py—1)S*(2) 2, Rry(£) dg
As in (2.6) using Green’s formula, we have

(H*ry(2), Rry (t)>u£%<th (), Rry(6) ) p+dllrp (8) llg?

for some constant d>0).

Thus by taking suitably & large and >0 small, and using a trace
theorem, we obtain

(2.10) Ny lo*< —allry () 124 Bllra () o247 11 (Py—T) S* (£) 2|71 02
for some constants a™>0, 8~>0 and 7>0.

By Gronwall inequality, (2.10) becomes for 0<t<T and 2 in
Hy()

@10 @l [ i) 1 2ds <4 | (=D §* ()2l onds

where £ is some constant depending on T.
Using Lebesgue dominated convergence theorem in (2. 11), we have

(2.12) 73 () Il:ﬁff;l!rh(s) r2ds ——> 0 as h-—> ().
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By density arguments, (2.12) holds for z in L2(Q) which shows
part (i).
From (2.12) and lemma 1.2, we obtain for = in H,' (D)

.
@13 [UDrArn @l >0 as b 0.

By the dual inequality of corollary 2.2 and (2.13), part (ii) follows.
From [9], we see that for » in H@2(Q), S*()z—P;8%(£)z is in
H'(Q). Thus for z in H2(Q), from (AP4) we have, 0<t<T,

(2.14) 1S* () = — PpS* (£) 2l 1. cor < chllzll e
where ¢ is some constant depending on 7.
From (2.11) and (2.14) we obtain for = in in I12(2),

(2.15) 184*(2) Phz—PpS* (0) 2llo< v/ &T chllzll 2o
On the other hand, from (AP3) we have for = in Hy?(Q),

(2.16) USy* (£) Prz—S* (1) 2l p <o (v 1 ) T2ISK™ (2) Pre—PiS* () 2llg

+eo( v R)THISH ()2 —PpS* (D) =l
Combining (2.14), (2.15) and (2.16), it can be seen that for z in
Hz(Q).
1S,*(e) Pra—S* () 2llr<b+/ h ll2lln2s,  0<t<T

where & is a constant depending on 7.
By lemma 1.2, part (iii) follows.

3. Convergences of Riccati operators and feedback controls

For simplicity, we assume that F and G are the identity operator
on L*(Q) and F,=G, in the assumption (1.9).

In order to proceed our arguments, we define
Fton W, and B, of L2(I") into W, for n=1,2,3, ..., A>0:

(3.1 (Folz, who={F,z, wyy for w,z in W, and

(3.2 (B, wyo—{u, D*A*w), for « in LI, we W,

Now we consider the following finite dimensional Riccati equations
on Wj: For given » and 2>0,

(FRE)  [ARA) =T A7 RAD R0 4y
l Wl_Rnh(t) Blz(])*A*)Rnh (t)
with RM(T)—=F
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It is well known that (FRE) has a unique positive self-adjoint matrix
solution R,*(¢) on W, for each » and h. Then by the similar method
as in [2], we have the following convergence results.

TueoreM 3.1. For each given n,
(i) RA@®) Pz —> R,(t)z in L2(Q) as h—> 0
Sfor each z in L?>(Q) uniformly in t<[0, T],
(i) D*A*R} () Pyz ——> D*A*R,(t)z in L2(I") as h ——> 0 for each =
in L2(Q) uniformly in t< [0, T],
where R,(t) is the unique positive self-adjoint solution of (RDE) in
section 1.

We are in a position to introduce a boundary control system with
finite dimensional feedback controls:

¥ (8) =Hy,*(2) on (0, T)XQ
Byt () =u,t (2) on (0, T) XTI
(CPE) ¥ (0) =0 on Q

\ unh(t) - dl)*A*Rnh(t)Phynh(t)’ 0<¢<T.

Remark. In (CPF), we note that y,2(¢) is the real time measurement
of the state of system (1.3) at time ¢ corresponding to the finite
dimensional feedback u,*(¢).

Then we have the following convergences.

TueoreM 3. 2. For each vy in L2(8), as h—0 and n—oo

(1) vt —> 3% in C([0, T] ;5 L3(Q)),

(1) w,t——>u" in L2(3)),
where u® is the original optimal control and ° is the corresponding
solution of system (1.3).

Proof. Let e,2(t)=y,2(t) —»,(¢), 0<e<T.
Then e,(¢t) = (Lv,*) (t) where
'Unh (t) = D*A*Rn (t) Yn (t) - D*A*Rnh (t) Phynh (t) .
Thus by theorem 1.3, we have
(3.3) lle ) lo<ellvtlly for 0<<T
for a constant ¢ depending on T.
By Lebesgue dominated convergence theorem and theorem 3.1,
(3.3) leads to .
(3.4) et () —> 0 in L2(Q) as h—0
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uniformly in t& [0, T].

On the other hand, we see that
(3.5) wa(8) —30(8) =P (8) +3,(8) —»0(2).

From theorem 1.5 with (3.4) and (3.5), we deduce part (i).

Part (ii) can be easily derived from theorem 1.5 and part (i).

Remark. Theorem 3.2 (i) can be also proved by using evolution

operator type arguments as in [4].

®
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