ON CERTAIN SUBCLASSES OF UNIVALENT FUNCTIONS

Nak Eun Cho

1. Introduction

Let A(n) be the class of functions of the form

(1.1)
$$f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k \ (n \in \mathbb{N} = \{1, 2, ...\}),$$

which are analytic in the open unit disk $U = \{z : |z| < 1\}$.

A function f(z) belonging to A(n) is said to be in the class $S^*(n, \alpha)$ if and only if

(1. 2)
$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha,$$

for some $\alpha(0 \le \alpha < 1)$ and for all $z \in U$.

A function f(z) belonging to A(n) is said to be in the class $B_1(\alpha)$ if and only if

(1. 3)
$$\operatorname{Re}\left(\frac{zf'(z)f^{\alpha-1}(z)}{z^{\alpha}}\right) > 0,$$

for $\alpha > 0$ and for all $z \in U$. (Powers in (1,3) are understood as principal values.) The class $B_1(\alpha)$ is the subclass of Bazilevič functions [5]. It is well known that classes of Bazilevič functions belong to the class of univalent functions.

In this paper, some estimates in relation to the real part of the function $\frac{f(z)}{z}$ are given, where f(z) belong to the class $S^*(n,\alpha)$, $\frac{1}{2} \le \alpha < 1$, or to the classes $B_1(\alpha)$ for $\alpha = 1$ and $\alpha = 2$.

2. Some results

We begin with the statement of the following lemma due to Miller and Mocanu [3].

Lemma. Let $\phi(u, v)$ be a complex valued function, $\phi: D \longrightarrow C$, $D \subset C \times C$ (C is complex plane),

Received January 13, 1988.

and let $u=u_1+iu_2$ and $v=v_1+iv_2$. Suppose that the function $\phi(u,v)$ satisfies the following conditions:

- (i) $\phi(u, v)$ is continuous in D;
- (ii) $(1,0) \in D$ and $Re\{\phi(1,0)\} > 0$;
- (iii) $Re\{\phi(iu_2, v_1)\} \leq 0 \text{ for all } (iu_2, v_1) \in D \text{ with } v_1 \leq -n(1+u_2^2)/2.$

Let $p(z) = 1 + p_n z^n + p_{n+1} z^{n+1} + ...$ be regular in the open unit disk U such that $(p(z), zp'(z)) \in D$ for all $z \in U$. If

$$Re\{\phi(p(z), zp'(z))\} > 0 \ (z \in U),$$

then $Re\{p(z)\}>0 \ (z\in U)$.

Now we prove

Theorem 1. Let the function f(z) defined by (1.1) be in the class $S^*(n,\alpha)$ with $1/2 \le \alpha < 1$. Then

(2.1)
$$Re\left(\frac{f(z)}{z}\right) > \frac{n}{2(1-\alpha)+n}.$$

Proof. We define the function p(z) by

(2.2)
$$\frac{f(z)}{z} = \beta + (1-\beta)p(z)$$

where

$$\beta = \frac{n}{2(1-\alpha)+n}.$$

Then the function $p(z) = 1 + p_n z^n + p_{n+1} z^{n+1} + ...$ is regular in U. From (2.2) we can express f(z) and then by differentiating we have

(2.4)
$$f'(z) = \beta + (1-\beta) (p(z) + zp'(z)).$$

Now, from (2.2) and (2.3) we conclude that

(2.5)
$$\frac{zf'(z)}{f(z)} - \alpha = 1 - \alpha + \frac{(1-\beta)zp'(z)}{\beta + (1-\beta)p(z)}.$$

Since the function f(z) is in the class $S^*(n,\alpha)$ if and only if $\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha$, we have

(2.6)
$$\operatorname{Re}\left\{1-\alpha+\frac{(1-\beta)zp'(z)}{\beta+(1-\beta)p(z)}\right\}>0.$$

Letting $p(z) = u = u_1 + iu_2$ and $zp'(z) = v = v_1 + iv_2$, we define the function $\phi(u, v)$ by

On certain subclasses of univalent functions

(2.7)
$$\phi(u,v) = 1 - \alpha + \frac{(1-\beta)v}{\beta + (1-\beta)u}.$$

Then $\phi(u, v)$ is continuous in $D = \left(C - \left\{\frac{\beta}{\beta - 1}\right\}\right) \times C$ and $\text{Re}\left\{\phi(1, 0)\right\}$

=1-lpha>0, and for all $(iu_2,v_1)\in D$ such that $v_1\leq -n(1+u_2^2)/2$,

$$\begin{aligned} \operatorname{Re} \left\{ \phi(iu_2, v_1) \right\} &= 1 - \alpha + \frac{\beta(1-\beta) v}{\beta^2 + (1-\beta)^2 u_2^2} \\ &\leq 1 - \alpha - \frac{\beta(1-\beta) n(1 + u_2^2)}{2 \left\{ \beta^2 + (1-\beta)^2 u_2^2 \right\}} \\ &\leq 0. \end{aligned}$$

Thus the function $\phi(u, v)$ satisfies the conditions in Lemma. This proves that $\text{Re}\{p(z)\}>0$, or

$$\operatorname{Re}\left(\frac{f(z)}{z}\right) > \frac{n}{2(1-\alpha)+n}.$$

This completes the proof of Theorem 1.

REMARK. Letting n=1 and $\alpha=1/2$, that is, for the class of starlike functions of order 1/2, we have

$$\operatorname{Re}\left(\frac{f(z)}{z}\right) > 1/2,$$

which is the well known result [1], [3].

THEOREM 2. Let $f(z) \in A(n)$ and $\operatorname{Re} \{f'(z)\} > 0$. Then $\operatorname{Re} \left(\frac{f(z)}{z}\right) > \frac{n}{n+2} (z \in U).$

Proof. We define the function p(z) by

(2.8)
$$\left(\frac{n+2}{2}\right)\frac{f(z)}{z} - \frac{n}{2} = p(z).$$

Then the function p(z) is regular in U. From (2.8), we have

$$f'(z) = \frac{n}{n+2} + \frac{2}{n+2} (p(z) + zp'(z)),$$

and since Re $\{f'(z)\}>0$ $(z \in U)$, it follows that

(2.9)
$$\operatorname{Re}\left\{\frac{n}{n+2} + \frac{2}{n+2}(p(z) + zp'(z))\right\} > 0 \ (z \in U).$$

It is easily shown that for the corresponding function

$$\phi(u, v) = \frac{n}{n+2} + \frac{2}{n+2}(u+v)$$

the conditions (i) and (ii) of Lemma are satisfied and that

Re
$$\{\phi(iu_2, v_1)\}\ = \frac{n}{n+2} + \frac{2}{n+2}v_1$$

 $\leq \frac{n}{n+2} - \frac{n(1+u_2^2)}{(n+2)}$
 $\leq 0,$

for all (iu_2, v_1) with $v_1 \le -n(1+u_2^2)/2$. Therefore, applying Lemma, we have that $\text{Re}\{p(z)\} > 0$, that is, that

$$\operatorname{Re}\left(\frac{f(z)}{z}\right) > \frac{n}{n+2} \ (z \in U).$$

THEOREM 3. Let the function f(z) defined by (1.1) be in the class $B_1(2)$. Then

$$\operatorname{Re}\left(\frac{f(z)}{z}\right) \geq \frac{n}{n+2} \quad (z \in U).$$

Proof. If we take the change as in (2.8), and follow the simlar way as in the proof of Theorem 2, we have

$$(2.10) \frac{f(z)f'(z)}{z} = \frac{1}{(n+2)^2} (2p(z)+n)^2 + \frac{2}{(n+2)^2} (2p(z)+n)zp'(z).$$

Since Re $\left(\frac{f(z)f'(z)}{z}\right) > 0$ $(z \in U)$, that is, from (2.10),

(2.11)
$$\operatorname{Re}\left\{\frac{1}{(n+2)^2}(2p(z)+n)^2+\frac{2}{(n+2)^2}(2p(z)+n)zp'(z)\right\}>0$$
 $(z \in U).$

If we consider the function

$$\phi(u,v) = \frac{1}{(n+2)^2} (2u+n)^2 + \frac{2}{(n+2)^2} (2u+n)v,$$

then it is directly checked that $\phi(u, v)$ satisfies the conditions (i) and (ii) of Lemma, and for all (iu_2, v_1) such that $v_1 \le -n(1+u_2^2)/2$, we have

$$\operatorname{Re} \left\{ \phi(iu_2, v_1) \right\} = \frac{1}{(n+2)^2} (-4u_2^2 + n^2) + \frac{2n}{(n+2)^2} v_1$$

$$\leq \frac{1}{(n+2)^2} (-4u_2^2 + n^2) - \frac{n^2 (1 + u_2^2)}{(n+2)^2}$$

$$\leq 0.$$

On certain subclasses of univalent functions

Therefore, from Lemma, we have that $\operatorname{Re} \{p(z)\} > 0$ $(z \in U)$, which implies, bescause of (2.8),

$$\operatorname{Re}\left(\frac{f(z)}{z}\right) > \frac{n}{n+2} \ (z \in U).$$

References

- 1. T.H. MacGregor, The radius of convexity for starlike functions of order 1/2, Proc. Amer. Math. Soc. 14(1963), 71-76.
- 2. S.S. Miller, Differential inequalities and Caratheodory functions, Bull. Amer. Math. Soc. 81(1) (1975), 79-81.
- 3. S.S. Miller and P.T. Mocanu, Second order differential inequalities in the complex plane, Seminar on complex analysis, Lecture notes in mathematics, Springer-Verlag, 743(1979), 301-322.
- M. Obradović, On certain inequalities for some regular functions in |z|
 Internat. J. Math. Math. Sci. 8(1985), 677-681.
- 5. R. Singh, On bazilevič functions, Proc. Amer. Math. Soc. 38(1973), 261 -271.

Pusan Fisheries University Pusan 608-737, Korea