PSEUDO-CONJUGATIONS

Ki Hyoung Ko

This note gives a combinatorial treatment to the problem finding a generating set among conjugating automorphisms of a free group and to the method deciding when a conjugating endomorphism of a free group is an automorphism. Our group of pseudo-conjugating automorphisms can be thought of as a generalization of the Artin's braid group.

One of main results of the note was motivated from link cobordisms and was utilized in [3]. But it seems worthwhile to look in the purely group theoretic aspect of the result. The idea of developing generator-conjugations to pseudo-conjugations was suggested by John McCarthy.

Let F_n be the free group on letters $x_1, ..., x_n$. This set of generators will be fixed throughout the paper. An endomorphism σ of F_n is a pseudo-conjugation if σ maps generators to conjugates of generators, more precisely, for each $1 \le i \le n$

$$\sigma(x_i) = w_{\sigma, i} x_{p\sigma(i)} w_{\sigma, i}^{-1}$$

where $w_{\sigma,i}$ is a word in F_n and $p\sigma: \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$ is a function. If $p\sigma$ is the identity, the endomorphism σ is called a generator-conjugation. By the properties of free groups, it is easy to see that σ determines p_{σ} uniquely. On the other hand, $w_{\sigma,i}$ is only determined by σ up to a right multiplication by a power of $x_{p\sigma(i)}$. That is, we may replace $w_{\sigma,i}$, only by $w_{\sigma,i}x_{p\sigma(i)}^m$ for some $m \in \mathbb{Z}$. σ determines $w_{\sigma,i}$ uniquely if we assume that $w_{\sigma,i}x_{p\sigma(i)}w_{\sigma,i}^{-1}$ is freely reduced. From here on if σ is a pseudo-conjugation then $w_{\sigma,i}$ will be defined by the free-reduction of $\sigma(x_i) = w_{\sigma,i}x_{p\sigma(i)}w_{\sigma,i}^{-1}$.

Let $PC(F_n)$ denote the monoid of all pseudo-conjugations of F_n . Let T_n be the monoid of maps: $\{1, ..., n\} \rightarrow \{1, ..., n\}$. Then the map sending σ in $PC(F_n)$ to $p\sigma$ in T_n is a homomorphism.

Similarly let $PCA(F_n)$ denote the group of pseudo-conjugating automorphisms of F_n . Let S_n be the group of permutations on $\{1, ..., n\}$.

Received February 13, 1988.

Passing to the abelianizations, one sees that p_{σ} in S_n is a homomorphism. Let $CA(F_n)$ be the kernel of π and be called the group of generator-conjugating automorphisms.

For $p \in S_n$, let $\rho(p)$ defined to be an automorphism sending x_i to $x_{p(i)}$ for $1 \le i \le n$. Then ρ is a monomorphism and

$$1 \rightarrow \operatorname{CA}(F_n) \rightarrow \operatorname{PCA}(F_n) \xrightarrow{\pi} S_n \rightarrow 1$$

becomes a split short exact sequence with splitting ρ . Hence for a given $\sigma \in PCA(F_n)$, there are a unique $p \in S_n$ and a unique $\alpha \in CA(F_n)$ such that $\sigma = p \circ \alpha$. In fact, α should be given to be $\rho(p\sigma^{-1}) \circ \sigma$.

Let AUF (F_n) denote the group of automorphisms of F_n . We recall that the *n*-th braid group B_n can be defined as the subgroup of AUT (F_n) that is generated by the automorphisms β_i for i=1, ..., n-1 defined by $\beta_i(x_i) = x_i x_{i+1} x_i^{-1}$, $\beta_i(x_{i+1}) = x_i$ and $\beta_i(x_j) = x_j$ for $j \neq i, i+1$. Over the fixed basis $\{x_1, ..., x_n\}$, B_n is a subgroup of PCA (F_n) .

In 1925, E. Artin characterized the element of B_n ([1], see also [2]). Let β be an endomorphism of F_n . Then $\beta \in B_n$ if an only if β satisfies the two conditions:

$$\beta(x_i) = w_i x_{p(i)} w_i^{-1}, \quad 1 \leq i \leq n;$$
$$\beta(x_1 \cdots x_n) = x_1 \cdots x_n,$$

where $p \in S_n$ and w_i is a word in the letters $x_1, ..., x_n$. This gives a simple condition which ensures that an endomorphism of F_n is an automorphism of F_n . It is an interesting open problem to find a "simple" necessary and sufficient condition for this. We will present a simple necessary condition for a pseudo-conjugation to be an automorphism.

Now we discuss generators for PCA(F_n). $\sigma \in AUT(F_n)$ is called a permutation if $\sigma = \rho(p)$ for some $p \in S_n$. $\sigma \in AUT(F_n)$ is called a simple conjugation if there exists a pair of distinct integers i, j=1, ..., n such that $\sigma = \alpha_{i,j}$ where $\alpha_{i,j}$ satisfies

$$\alpha_{i,j}(x_i) = x_j x_i x_j^{-1};$$

 $\alpha_{i,j}(x_k) = x_k \text{ for } k \neq i.$

THEOREM. $CA(F_n)$ is generated by simple conjugations.

In view of the above split short exact sequence, we have:

Corollary. PCA(F_n) is generated by permutations and simple conju-

gations.

 $\sigma \in AUT(F_n)$ is a generalized simple braid if there exists a pair of distinct integers i, j=1, ..., n such that $\sigma = \sigma_{i,j}$ where $\sigma_{i,j}$ satisfies

$$\sigma_{i,j}(x_i) = x_i x_j x_i^{-1};$$

 $\sigma_{i,j}(x_j) = x_i;$
 $\sigma_{i,j}(x_k) = x_k, \quad k \neq i, j.$

Artin's generators for B_n are just $\sigma_{i,i+1}$ for $1 \le i \le n-1$. Let (i,j) be the transposition of i and j in S_n . Then

$$\alpha_{i,j} = (i,j) \circ \sigma_{i,j}$$
 for $1 \le i \ne j \le n$

Therefore we have:

COROLLARY. $PCA(F_n)$ is generated by permutations and generalized simple braids.

Suppose α is a generator-conjugation given by

$$\alpha(x_i) = w_i x_i w_i^{-1} \quad \text{for } i = 1, ..., n$$

where w_i is a word and $w_i x_i w_i^{-1}$ is freely reduced. It is convenient to write $\alpha = (w_1, w_2, ..., w_n)$. This expression is unique. The simple conjugation $\alpha_{i,j}$ is now written as $(e, ..., e, x_j, e, ..., e)$, and $\alpha_{i,j}^{-1}$ is given by $(e, ..., e, x_j^{-1}, e, ..., e)$ where $x_j^{\pm 1}$ is in the *i*-th spot and *e* denotes the empty word.

Lemma. Let $\alpha = (w_1, w_2, ..., w_n)$ be a generator-conjugation. If α is an automorphism and is not the identity, then there is at least a pair (j,k) of distinct integers among 1, 2, ..., n such that

$$w_k = w_j x_j \varepsilon \bar{w}_k$$

where \overline{w}_k is a reduced word which does not end with x_k or x_k^{-1} and $\varepsilon = \pm 1$.

Applying a permutation to this lemma, we have:

Corollary. Let σ be a pseudo-conjugation as given at the beginning of the paper. If σ is an automorphism and is not a permutation, then there is at least a pair (j,k) of distinct integers among 1,2,...,n such that

$$w_{\sigma,k} = w_{\sigma,j} x_{b\sigma}^{\epsilon}(j) \bar{w}_{k}$$

where \bar{w}_k is a reduced word which does not end with $x_{p\sigma(j)}$ or $x_{p\sigma(j)}^{-1}$

and $\varepsilon = \pm 1$.

Proof of Lemma. Let $\alpha^{-1} = (u_1, u_2, ..., u_n)$. In fact, $u_i = \alpha^{-1}(w_i)$. Since α is not the identity, there is $1 \le k \le n$ such that w_k is not the empty word and neither is u_k . If u_k is given by the word $x_{k_1}^{\epsilon_1} x_{k_2}^{\epsilon_2} \cdots x_{k_r}^{\epsilon_r}$, then

$$x_{k} = \alpha \circ \alpha^{-1}(x_{k}) = \left(\prod_{s=1}^{r} (w_{k,} x_{k,}^{\varepsilon_{s}} w_{k,}^{-1})\right) w_{k} x_{k} w_{k}^{-1} \left(\prod_{s=1}^{r} (w_{k,} x_{k,}^{\varepsilon_{s}} w_{k,}^{-1})\right)^{-1}.$$

When $\alpha = (w_1, w_2, ..., w_n)$ be a generator-conjugation, the *length* $l(\alpha)$ of α is defined as $l(\alpha) = l(w_1) + l(w_2) + \cdots + l(w_n)$ where $l(w_i)$ is the length of the reduced word w_i . It is clear that $l(\alpha) = 0$ if and only if α is the identity.

Proof of Theoem. Let $\alpha = (w_1, w_2, ..., w_n)$ be in $CA(F_n)$. Our proof is done by induction on $l(\alpha)$. Suppose that α is not the identity. Let (j,k) be the pair given by Lemma. Since w_k is reduced, \overline{w}_k can not start with $x_j^{-\epsilon}$. Then $\alpha \circ \alpha_{k,j}^{-\epsilon} = (w_1, ..., w_{k-1}, w_j \overline{w}_k, w_{k+1}, ..., w_n)$. Thus $l(\alpha \circ \alpha_{k,j}^{-\epsilon})$ is strictly less than $l(\alpha)$. By induction, α can be made into the identity by composing $\alpha_{k,j}^{-\epsilon}$'s on the right.

Lemma and the proof of Theorem give an effective method for determining whether a pseudo-conjugation is an automorphism.

Let F_3 be the free group on letters x, y, z. Define a pseudo-conjugation $\sigma: F_3 \to F_3$ by $\sigma(x) = yxyx^{-1}y^{-1}$, $\sigma(y) = x$, $\sigma(z) = z$. After permuting x and y, we have a generator-conjugation (yx, e, e). By Lemma, this is not an automorphism.

For another example, let $\alpha = (z^{-1}y, x, xyx^{-1})$ be a generator-conjugation on F_3 . Noticing $w_3 = w_2yx^{-1}$, we have $\alpha \circ \alpha_{3,2}^{-1} = (z^{-1}y, x, e)$ Applying the same technique again, $\alpha \circ \alpha_{3,2}^{-1} \circ \alpha_{1,3} = (y, x, e)$. Now this

Pseudo-conjugations

conjugation does not satisfy the condition of Lemma and hence α was not an automorphism.

Theorem and its corollaries say that every automorphism in $CA(F_n)$ or in $PCA(F_n)$ can be written as a product of $\alpha_{i,j}$'s or a product of $\alpha_{i,j}$'s and a permutation. However the product is by no means unique. For example, $\alpha_{i,j} \circ \alpha_{k,j} = \alpha_{k,j} \circ \alpha_{i,j}$. The problem finding the complete set of relations among these generators of $CA(F_n)$ seems interesting. In [3], the quotient group of $CA(F_n)$ by inner automorphisms was useful and hence the same problem for this group needs some attention. These problems will be considered in sequent papers.

References

- 1. E. Artin, Theory of braid, Ann. of Math. 48, 101-126.
- 2. J. Birman, Braids, links, and mapping class groups, Princeton University Press, Princeton, New Jersey, 1975.
- 3. K.H. Ko, Seifert matrices and Boundary link cobordisms, Trans. A.M.S. 299, 657-681.

Korea Institute of Technology Taejon 302-338, Korea