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PSEUDO-CONJUGATIONS

K1 Hyoune Ko

This note gives a combinatorial treatment to the problem finding a
generating set among conjugating automorphisms of a free group and
to the method deciding when a conjugating endomorphism of a free
group is an automorphism. Our group of pseudo-conjugating automor-
phisms can be thought of as a generalization of the Artin’s braid
group.

One of main results of the note was motivated from link cobordisms
and was utilized in [8]. But it seems worthwhile to look in the purely
group theoretic aspect of the result. The idea of developing generator-
conjugations to pseudo-conjugations was suggested by John McCarthy.

Let F, be the free group on letters zy, ..., z,. This set of generators
will be fixed throughout the paper. An endomorphism ¢ of F, is a
pseudo—conjugation if ¢ maps generators to conjugates of generators,
more precisely, for each 1<i<n

0 (2)) =W, i pg(nWy, i !

where w, ; is a word in F, and po: {1,2,...1}—{1,2,...,n} isa
function. If po is the identity, the endomorphism ¢ is called a genera-
tor-conjugation. By the properties of free groups, it is easy to see
that ¢ determines p, uniquely. On the other hand, w,; is only
determined by ¢ up to a right multiplication by a power of z,,q.
That is, we may replace w, ,;, only by w, ;x4 for some meZ. ¢
determines w,,; uniquely if we assume that w, ;25,w, ;! is freely
reduced. From here on if ¢ is a pseudo-conjugation then w, ; will be
defined by the free-reduction of o(2;) =w,,iTpsirw,i L

Let PC(F,) denote the monoid of all pseudo—conjugations of F,.
Let T, be the monoid of maps: {1,...,2}—{1,...,2). Then the map
sending ¢ in PC(F,) to po in T, is a homomorphism.

Similarly let PCA(F,) denote the group of pseudo-conjugating
automorphisms of ¥,. Let S, be the group of permutations on {1, ...,7}.
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Passing to the abelianizations, one sees that p, in S, is a homomor-
phism. Let CA(F,) be the kernel of = and be called the group of
generator—conjugating automorphisms.

For p€8,, let p(p) defined to be an automorphism sending z; to
Zpe for 1<i<n. Then p is a monomorphism and

Vi
1-CA(F,)—»PCA(F,)—S,—1
becomes a split short exact sequence with splitting p. Hence for a
given ¢ &PCA(F,), there are a unique pES, and a unique «a €CA(F,)
such that o=peca. In fact, a should be given to be p(po~1)ca.

Let AUF(F,) denote the group of automorphisms of F,. We recall
that the n-th braid group B, can be defined as the subgroup of AUT
(F,) that is generated by the automorphisms §; for i=1,..., n—1
defined by B;(z;) =zz;12:7Y, Bi(xi1) =z; and B;(a;) =x; for j#i,i+1.
Over the fixed basis {z), ..., x,}, B, is a subgroup of PCA(F,).

In 1925, E. Artin characterized the element of B, ([1], see also
[2]). Let 8 be an endomorphism of F,. Then S€B, if an only if
5 satisfies the two conditions:

B(z;) =wizppw; 1, 1<i<n;

Blay -+ ) =21 - 2,
where p&S, and w; is a word in the letters zj, ..., z,. This gives a
simple condition which ensures that an endomorphism of F, is an
automorphism of F,. It is an interesting open problem to find a
“simple” necessary and sufficient condition for this. We will present
a simple necessary condition for a pseudo-conjugation to be an auto-
morphism.

Now we discuss generators for PCA(F,). ¢<€AUT(F,) is called a
permutation if o=p(p) for some peS,. 6€AUT(F,) is called a simple
conjugation if there exists a pair of distinct integers 4, =1, ...,n such
that 6=a; ; where a; ; satisfies

a; i (&) =zzxi7
a; j(xp) =z for k#i.

Tueorem. CA(F,) is generated by simple conjugations.
In view of the above split short exact sequence, we have:

CoroLLarY. PCA(F,) is generated by permutations and simple conju-
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gations.

c€AUT(F,) is a generalized simple braid if there exists a pair of

distinct integers i, j=1, ..., » such that ¢=o0;; where o;, ; satisfies
0; i (x;) = xizjz 715
0, i(x) = x;;

o j(zp) =z, k#i, j.
Artin’s generators for B, are just 0; ;.4 for 1<i<n—1. Let (i, ;) be
the transposition of ¢ and 7 in S,. Then
a; ;= (, )eo;; for 1<i#j<n
Therefore we have:

CoroLLary. PCA(F,) is generated by permutations and generalized
simple braids.

Suppose « is a generator—conjugation given by
alz)=wizzw; ' for i=1,..,n
where w; is a word and w;z;w;”! is freely reduced. It is convenient
to write = (wy, wy, ..., w,). This expression is unique. The simple
conjugation a; ; is now written as (e, ...,e, zj,¢,...,¢), and a; ;7! is
given by (e, ...,e, 2,7 e, ...,e) where z;*! is in the i—th spot and e
denotes the empty word.

Lemma. Let a= (wy, wo, ..., w,) be a generator—conjugation. If «a is
an automorphism and is not the identity, then there is at least a pair
(7, k) of distinct integers among 1,2, ..., n such that

W= W;T;EW},
where @, is a reduced word which does not end with x; or z;7! and e=
+-1.

Applying a permutation to this lemma, we have:

CoroLLARY. Let 0 be a pseudo—conjugation as given at the beginning
of the paper. If ¢ is an automorphism and is not a permutation, then
there is at least a pair (j, k) of distinct integers among 1,2, ....,n such
that

Wy k=W, ;T ps" (H Wk
where wy is a reduced word which does not end with xp,; or Zpsii”
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and e=+41.

Proof of Lemma. Let a '=(uy, uy, ...,u,). In fact, wy=a H(w,;).
Since a is not the identity, there is 1<A<n such that wg is not the
empty word and neither is w,. If 4 is given by the word Ty 1T 2
z4fr, then

r i r ~1
=aoa (xy) = ( H] (wp.ap, rwy ) )lvleka)f1 ( HI (wp, s, 5wy, 1) > .
= =

Since w;zr;w; 1 was reduced for each i, so is wxptswy, ! for each s.
Thus in the above product any cancelation must begin between one
of pairs (w1, w,) or (wi, ™, wyyy) for s=1,...,7—1. We now assume
that Lemma is false. Then there is no way for any of the middle
letters in the block, ie., =z, and 21, T2, -, 2350 in the above
product, to be canceled out. Since there is at least one letter among
these middle letters which is different from ap or ;7! (for example
z3fr), this is a contradiction.

When a=(w,, w,, ...,w,) be a generator—-conjugation, the [length
(@) of a is defined as 1(a) =1(w;) +1(wy) + - +1(w,) where I(w,) is
the length of the reduced word w,. It is clear that I(a)=0 if and
only if « is the identity.

Proof of Theoem. Let a= (wi, w,, ..., w,) be in CA(F,). Our proof
is done by induction on Z(a). Suppose that a is not the identity. Let
(j, &) be the pair given by Lemma. Since 1wy is reduced, @, can not
start with z;7¢. Then acay ;7*= (wy, ..., wp_j, WjWhy Whils »eey Wy). Lhus
I(aoay ;%) is strictly less than («). By induction, @ can be made
into the identity by composing e #'s on the right.

Lemma and the proof of Theorem give an effective method for
determining whether a pseudo-conjugation is an automorphism.

Let F; be the free group on letters z, v, 2. Define a pseudo-conjuga-
tion ¢ : Fs—F; by 0(z) =yzyz7 1y}, 6(y)=z,0(2) =2 After permuting
z and y, we have a generator-conjugation (yz,e,¢). By Lemma, this
is not an automorphism.

For another example, let a=(z"ly, z, zyz"1) be a generator-conju-
gation on F; Noticing wy;=w,yz™!, we have oy o 1= (271y, 2, €)
Applying the same technique again, aoay o toay 3==(y,x,¢). Now this

— 260 —



Pseudo-conjugations

conjugation does not satisfy the condition of Lemma and hence a was
not an automorphism.

Theorem and its corollaries say that every automorphism in CA (F,)
or in PCA(F,) can be written as a product of a; ;s or a product of
a; ;s and a permutation. However the product is by no means unique.
For example, a; joay ;=ay joa; ;. The problem finding the complete
set of relations among these generators of CA(F,) seems interesting.
In (3], the quotient group of CA(F,) by inner automorphisms was
useful and hence the same problem for this group needs some attention.
These problems will be considered in sequent papers.
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