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TUBE FORMULAS FROM CHERN’'S KINEMATIC FORMULA

SuneyuN Lee anp Seune Pvo Howng

1. Introduction

In 1966 Chern [1] proved the following remarkable kinematic formula.
For any compact p-dimensional submanifold P of Euclidean n-space
R, Chern considered invariants I, of P,0<e¢ even<p, which are
given by

—e)!
(1) L= (212/2;)! Za(ﬁ) Rajazsipy Rap-raepe-150

R;;u being the curvature tensor of P, while ¢ (g) is +1 or —1 according
as ay, -+, «, are distinct and an even or odd permutation of §i, :--, ,,
and otherwise 5(%> is zero. The summation in I, is taken over all a’s

and §’s running from 1 to p. When P is oriented, the integral of I,
over P is denoted by g, (P). Let P and @ be compact manifolds of
dimensions p and ¢ imbedded in R*, and let g be an element of the
group E(n) of proper motions of R*. For almost all g€E(»), PNgQ
is again a submanifold of dimension p+g—n, and g, (PNgQ) are

meaningful quantities. Chern proved that, if 0<e even<p-+g—n, then
) [0 (PNe@dg=_T cn®)pei(@

for constants ¢; depending on p,q,7n and e, while the integration
extends over E(n), and dg is the Haar measure on E(n).

In this paper, by employing this kinematic formula and the genera-
lized Gauss-Bonnet formula, we derive formulas related to the volume
of a tube about a submanifold in R” Specifically let V,*(+) be the
n~dimensional volume of a tube of radius » about P in R*. Throughout
the paper we assume that >0 is less than or equal to the distance
from P to its nearest focal point. We will derive Weyl’s tube formula
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(5] for odd dimensional P

[ /2] n—p)
(3) Vpn(r)zi—. e p:szC(P) paptec,
< 2fr<”21’ +c+1)

where the invariants
L(P)=_ P
(4) ch(P) 2”(1)_26) 'C' ﬂZc(P)-
In this derivation we neced the generalized Gauss-Bonnet formula as
follows:

— (2m)r2 P
(5) ﬂP(P) (P—l)(P—:)))"'S'IX( ),
where p=dim P is even and X(P) is the Euler characteristic of P.
We also need the product expression [4] for ¢; in (2) as

Op+q—n+10p+q—n+2 (%) '

6 ;=017 05" _ Opig-n—ei2 .
-1
( OPHOP-*?-("%) ') < Oq—1—10q+2 <62 )')
OP—H 2 O:1~e+i'( 2
where O,,= 2757;;2 is the volume of the unit sphere of dimension m-1
)
2

in R™. Moreover with the formula due to Nijenhuis [4]

(7 ko (PXQ) = Zé ki (P) ko —2: (@)
it is not difficult to obtain the following product formula

© Vpxg"(r)zrfj [qZ/:zJ E(n—P—q)/sza(P)kf})(?) mp-s2at2s

T 2o (kb 1+ A Bt

when p-+g is odd. Here PXQ is the Riemannian product of P and
Q.

Similarly we can derive the expression for k,,(P,), where P, is the

tubular hypersurface of radius r about P, in terms of %, (P) and r. If
p is odd and 7 is even, then we have

[pi21 25‘—Ll+l7z‘-(7l—1)_1)/21—7 <c+';]é‘>
(9) k2c (Pr) = S0 n—p
P(———«Z -}—a)

(n—-j)+2a—]>

2¢

— 262 —



Tube formulas from Chern’s Kinematic formula
><k2a (P) rn-—p+2a»2:f1.

REMARKs.

(1) We essentially follow Wolf [6] for the derivation of (3).
But computations are simplified greatly with the expression
(6) of ¢,

(2) In general the formulas (3), (8) and (9) hold without
assumptions on parity (see for example [2,3,5]). But we
derive them as applications of Chern’s kinematic formula
under the parity assumptions.

(3) The Haar measure dg on E{(n)=R"XSO(n) is normalized
so that dg=dz/\dg,, where dz is the volume element on
R” and dg, is the Haar measure on SO(#z) such that

(10) [280=0.0, 10,
(4) A direct proof of (7) is given in [2].

2. Derivations from Chern’s kinematic formula

Proof of (3). Let P be a compact imbedded submanifold of R? and
let p=dim P be odd. We will apply Chern’s kinematic formula (2)
with P as the stationary submanifold and with S771(») as the moving
submanifold of R». Herc S$*1(+) is the (n—1)-sphere of radius r,
and >0 is less than or egual to the distance from P to its nearest
focal point. Let 2 be the center of gS* 1(r), g€ E(n). Since E(n) is
the semidirect product RB*XSO(#n) we can write gS" 1(r) =goS,* 1 (),
where go,&S0(n) and S," () denotes the (rn—1)-sphere of radius r
with the center z. If d(z, P)>r, then PNgS*» 1(r) is empty. Hence
we can say that

() (101 (PgST10))de

:fR" (Jsom tp—1 (PN goS:"1(r) )dgo) dx

([ PR&Sr 1)) dg0)d,
TP, SO

where dgy is the Haar measure on SO(#) normalized so that jso< )dgo
n

=0,0,_10;, and TP, r)={z€R"|d(z, P)<r}. To evaluate the
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integral (11) we may assume d(xz, P)<'r since the measure of the
boundary of T(P, r) is equal to 0. Then P £0S," 1(r) is homeomorphic
to a (p—1)-sphere. Now by the Gauss~Bonnet formula (5)

(12)  pp 1 (PNgeS»1(r)) = (P_S?P(I:Z)/.Z..g.l 2

since the Euler characteristic of an even-dimensional sphere is 2.
Furthermore

and f TP, P dz=Vp"(r)

£ (S 1(r)) = O e 1,
Putting the kinematic formula (2) and the Gauss-Bonnet formula (12)
together we obtain from (11)

#(py = (p—2) (p—4)---3-1 n=pti
a3 V@) . SFD G720, .0 i )T

According to (6), ¢; in (13) is given by

u)’O 030, pei
< 5 ) Un-170s n—/’+:+2_ OPOP“OP—HIOP_HQ-
(»é—)' (f’—%l_) 10,11 0y:10,13

Since Legendre duplication formula implies Oy 0p=2% 21k 1/}l we
have

C;=

2P—i+l7r(n+1)/2p(P;1 )g 0, 1--0;
DG r (2P
(2)'(1’ ’>'P( 2

Pl 129Gm2i4® 120 ...,

(—;L)!(p—i)!@—z) <1>~4>-"3'1'f(£j%ﬁ£) |

C;—

Hence ¢; can be written as

. P! Z(PH)/275(?_1)/20,,“1“’02
14 i 3 *
(14) ¢ 2"/2<—z——>‘(1>—i)’ (p—2)(p—4)---3-1
5)! !
. zm=p /2
i/2 l’:ﬁ:tﬂﬂ) '
2 P( .

Substituting (4) and (14) to (13) we obtain the result
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(15) V= % —TTPPRE) e
0<i evengp 21’/21’7( n ;P _}_%—‘— 1)

where p is odd.

Proof of (8). Let the Riemannian product PXQ be an imbedded

submanifold of R* and let p+¢ be odd. Then from (3) and (7) we
have (8).

Proof of (9). Let p=dim P be odd and let n be even. We will
apply Chern’s kinematic formula with the tubular hypersurface P, as
the stationary submanifold and with §771(s), 0<s<7r, as the moving
submanifold of R” Since Vp*(s)=Vp(r+s)—Vp'(r—s), we have
from (15)

(n—2)/2 1/2
(16) Virt(rts) — Vpr(r—s) = 30 — T 2o (Pr) ot

= 2er(e+1+ 1)

By (3) we can express the left-hand side as
(17) Vp" (7'+S) - VP" (7'_8>
[p/2] (nfzwz n.(n-p)/zkztz (P) Fnpt2a—2c—1 (”"P+2a)32c+1
T 4=0 =0 - n—P 2C+1 )
2e71 5 +a+1
Finally we obtain (9) by comparing the coefficients of powers of s in

(16) and (17).
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