BEST APPROXIMATION BY COMPACT OPERATORS

Chong-Man Cho

1. Introduction

Let J be a closed subspace of a Banach space X. An element x in X is said to have a best approximation in J if there is an element y in J such that $||x-y||=\inf\{||x-j||\ ;\ j\in J\}$. J is called a proximinal subspace of X if every x in X has a best approximation in J. It is known that a Banach space X is reflexive if and only if every closed subspace of X is proximinal [15]. If J is an M-ideal in X, then J is proximinal in X [8, 12, 19] and for each $x\in X\setminus J$ the set of best approximations in J of x algebraically spans J [10].

Many authors have studied the problem of determining those Banach spaces X and Y for which K(X,Y), the space of compact linear operators from X to Y, is proximinal in L(X,Y), the space of bounded linear operators from X to Y. If X=Y, we will write L(X) (resp. K(X)) for L(X,X) (resp. K(X,X)). Several sufficient conditions for the proximinality of K(X,Y) in L(X,Y) are known [2,8,11,16,19], and for certain spaces X and Y the questions whether K(X,Y) are proximinal in L(X,Y) are answered [2,4-7,11,13,16,17,19,20]. For example, $K(c_0)$, $K(l^1)$ and $K(l^p,l^q)$ for $1 < p,q < \infty$ are proximinal in the corresponding spaces of operators [7,11,13] while if $X=l^\infty$ or $L^p(0,1)$ $(1 \le p \le \infty, p \ne 2)$ K(X) is not proximinal in L(X) [6,4].

Axler, Berg, Jewell and Shields [2] introduced a condition (called the Basic Inequality) on X and a condition on an operator $T \in L(X)$ which insure the existence of a best approximation in K(X) of T. They [2] proved that if X is a Banach space which satisfies the Basic Inequality and which has a shrinking basis, then every T in L(X) has a best approximation in K(X). In particular, since l^p $(1 satisfies the Basic Inequality [2; Theorem 2], <math>K(l^p)$ is proximinal in

Received April 29, 1988.

Supported by the Ministry of Education, 1987.

 $L(l^p)$.

In this paper we consider a pair (X, Y) of Banach spaces and use the method introduced in [2] to obtain best compact approximations of operators in L(X, Y), In Corollary 6 we will prove that if X and Y are closed subspaces of l^p and l^q $(1 , respectively, and if <math>T \in L(X, Y)$ is in the closure of K(X, Y) in the strong operator topology (SOT in short), then T has a best approximation in K(X, Y). Thus if either X or Y has the compact approximation property, then K(X, Y) is proximinal in L(X, Y).

2. The existence of the best approximation in K(X, Y)

Motivated by a definition in [2] we say that a pair (X, Y) of Banach spaces satisfies the Basic Inequality if for each T in L(X, Y) and each sequence $\{A_n\}$ in L(X, Y) such that $A_n \to 0$ (SOT) and $A_n^* \to 0$ (SOT) the following is true: for each $\varepsilon > 0$, there exists N such that

$$||T+A_N|| \le \varepsilon + \max\{||T||, ||T||_{\varepsilon} + ||A_N||\}$$

where $||T||_e = \inf \{ ||T - K||; K \in K(X, Y) \}$.

Then we have the following theorem which is really a restatement of Theorem 1 in [2] in an L(X, Y) context.

Theorem 1. Suppose a pair (X,Y) of Banach spaces satisfies the Basic Inequality. Let $T \in L(X,Y) \setminus K(X,Y)$ and let $\{T_n\}$ be a sequence in K(X,Y) such that $T_n \to T$ (SOT) and $T_n^* \to T^*$ (SOT). Then there exists a sequence $\{a_n\}$ of non-negative real numbers such that $\sum a_n = 1$ and $\|T\|_e = \|T - K\|$, where $K = \sum a_n T_n$.

Proof. The proof of Theorem 1 in [2] proves this by simply replacing operators in L(X) by operators in L(X, Y).

The proof of the next theorem is a minor modification of the proof of Theorem 2 in [2].

THEOREM 2. If $1 and X is a closed subspace of <math>l^p$, then (X, l^q) satisfies the Basic Inequality.

Proof. Let $T \in L(X, l^q)$ and let $\{A_n\}$ be a sequence in $L(X, l^q)$ such that $A_n \to 0$ (SOT) and $A_n^* \to 0$ (SOT). Let $\alpha_n = \max\{||T||, ||T||_e + ||A_n||\}$. If (X, l^q) did not satisfy the Basic Inequality, then there would exist $\varepsilon > 0$ and a sequence $\{x_n\}$ of unit vectors in X such that

(1)
$$||(T+A_n)x_n|| > \varepsilon + \alpha_n \text{ for all } n.$$

Since B_X (the closed unit ball of X) is weakly compact, by passing to a subsequence if necessary we may assume that $x_n \to x \in B_X$ weakly. Set $x_n = x + y_n$ where $y_n \to 0$ weakly. Let P_n (resp. Q_n) be the projection of l^p (resp. l^q) onto the span of the first n vectors in the unit vector basis.

We claim that $\lim_{n\to\infty} \sup\{||x||^q + ||y_n||^p\} \le 1$ and $||T||_e = \lim_{n\to\infty} ||(I-Q_n)T||$. Given $\eta > 0$, choose m so that $||(I-P_m)x|| < \eta$. Since $y_n \to 0$ weakly, $||P_m y_n|| < \eta$ for all large n.

Thus
$$||x||^p + ||y_n||^p = ||P_m x||^p + ||(I - P_m) y_n||^p + ||(I - P_m) x||^p + ||P_m y_n||^p$$

$$< ||P_m x + (I - P_m) y_n||^p + 2\eta^p$$

$$= ||x + y_n - (I - P_m) x - P_m y_n||^p + 2\eta^p$$

$$\le (||x_n|| + ||(I - P_m) x|| + ||P_m y_n||)^p + 2\eta^p$$

$$< (1 + 2\eta)^p + 2\eta^p \quad \text{for all sufficiently large } n.$$

Since η is arbitrary, $\lim_{n\to\infty} \sup \{||x||^p + ||y_n||^p\} \le 1$.

Since $||T-K|| \ge ||(I-Q_n)(T-K)|| \ge ||(I-Q_n)T|| - ||(I-Q_n)K||$ and $||(I-Q_n)K|| \to 0$ for each $K \in K(X, l^q)$, we have that

$$||T-K|| \ge \limsup_{n \to \infty} ||(I-Q_n)T||$$
 and hence $||T||_e \ge \limsup_{n \to \infty} ||(I-Q_n)T||$.

Obviously $\liminf_{n\to\infty} ||T-Q_nT|| \ge ||T||_e$. Hence $\lim_{n\to\infty} ||(I-Q_n)T|| = ||T||_e$.

Now fix $0 < \delta < 1$ and choose M so that $||(I - Q_M)x|| < \delta$ and $||(I - Q_M)T|| < ||T||_e + \delta$. Since $y_n \to 0$ weakly and $Q_M T$ is compact, $||Q_M T y_n|| \to 0$. Since Q_M^* is compact, $A_n^* \to 0$ (SOT) and $A_n \to 0$ (SOT), it follows that $||Q_M A_n|| = ||A_n^* Q_M^*|| \to 0$ and $||A_n x|| \to 0$. Thus for all sufficiently large n.

(2)
$$||(T+A_n)x_n|| \le ||Q_MTx + (I-Q_M)(Ty_n + A_ny_n)|| + ||(I-Q_M)Tx + Q_M(Ty_n + A_ny_n) + A_nx|| < ||Q_MTx + (I-Q_M)(Ty_n + A_ny_n)|| + 4\delta.$$

Since $Q_M Tx$ and $(I-Q_M)(Ty_n+A_ny_n)$ have disjoint spaperts, we have

(3)
$$\|Q_{M}Tx + (I - Q_{M}) (Ty_{n} + A_{n}y_{n})\|^{q}$$

$$= \|Q_{M}Tx\|^{q} + \|(I - Q_{M}) (Ty_{n} + A_{n}y_{n})\|^{q}$$

$$\leq \|T\|^{q} \|x\|^{q} + (\|(I - Q_{M}) T\| + \|A_{n}\|)^{q} \|y_{n}\|^{q}$$

$$\leq (\alpha_{n} + \delta)^{q} (\|y\|^{q} + \|y_{n}\|^{q}).$$

Since $\limsup_{x \to \infty} \{||x||^p + ||y_n||^p\} \le 1$, $||y_n|| \le 1$ and hence

 $||x||^q + ||y_n||^q \le ||x||^p + ||y_n||^p \le 1 + \delta$ for all sufficiently large n.

Thus from (2) and (3) we get that

 $||(T+A_n)x_n|| < (\alpha_n+\delta)(1+\delta)^{1/q}+4\delta$ for all sufficiently large n. Since $\delta > 0$ is arbitrary, this contradicts to (1).

THEOREM 3 Suppose X and Y are subspaces of l^p and l^q (1 , respectively. Then <math>(X, Y) satisfies the Basic Inequality.

Proof. First observe that if $T \in L(X, Y)$ and $J: Y \to l^q$ is the inclusion, then for each y^* in $(l^q)^*$, $(JT)^*y^* = T^*(y^*|_Y)$, where $y^*|_Y$ is the restriction of y^* to Y.

Suppose $\{A_n\}$ is a sequence in L(X, Y) such that $A_n \to 0$ (SOT) and $A_n^* \to 0$ (SOT). Then $JA_n \to 0$ (SOT) and $(JA_n)^* \to 0$ (SOT). Since (X, I^q) satisfies the Basic Inequality, given T in L(X, Y) and $\varepsilon > 0$, there exists a positive integer N such that

$$||JT+JA_N|| \le \varepsilon + \max\{||JT||, ||JT||_e + ||JA_N||\}$$

where $||JT||_e = \inf \{||JT-K|| ; K \in K(X, l^q)\}$ Since $||JT||_e \le ||T||_e$ and ||JS|| = ||S|| for every S in L(X, Y), we have

$$||T+A_N|| \le \varepsilon + \max\{||T||, ||T||_e + ||A_N||\}.$$

THEOREM 4. Suppose X is a separable reflexive Banach space and Y is a Banach space with the separable dual space. If (X, Y) satisfies the Basic Inequality and $T \in L(X, Y)$ is in the closure of K(X, Y) in the strong operator topology, then T has a best approximation in K(X, Y).

Proof. Suppose $T \in L(X, Y)$ is in the closure of K(X, Y) in the strong operator topology and suppose $\{K_{\alpha}\}$ is a net in K(X, Y) such that $K_{\alpha} \to T$ (SOT). Then $\{K_{\alpha}\}$ is uniformly bounded. We choose a

countable dense subset $D = \{x_i : i=1, 2, 3, \cdots\}$ of X. For each n let $D_n = \{x_1, x_2, \cdots, x_n\}$ and choose T_n from $\{K_\alpha\}$ such that $||T_n x - Tx|| < 1/n$ for all x in D_n . Then $\{T_n\}$ converges to T (SOT).

Since for each x in X and each y^* in Y^* $(T_n^*y^*)x = y^*(T_nx)$ converges to $y^*(Tx) = (T^*y^*)x$ and since X is reflexive, $T_n^*y^*$ converges to T^*y^* weakly for every y^* in Y^* .

Let $E = \{y_j^* : j = 1, 2, 3, \cdots\}$ be a countable dense subset of Y^* and choose a sequence $\{S_{1n}\}_{n=1}^{\infty}$ so that each S_{1n} is a convex combination of $\{T_j\}_{j=n}^{\infty}$ and $S_{1n}^*y_1^* \to T^*y_1^*$ in norm. Next choose a sequence $\{S_{2n}\}_{n=1}^{\infty}$ so that S_{2n} is a convex combination of $\{S_{1j}\}_{j=n}^{\infty}$ and $S_{2n}^*y_2^* \to T^*y_2^*$ in norm. We continue the process in an obvious manner and let $S_n = S_{nn}$. Then $S_n^*y_j^* \to T^*y_j^*$ as $n \to \infty$ for each j and hence $S_n^* \to T^*$ (SOT). Obviously each S_n is in K(X, Y) and $S_n \to T$ (SOT). By Theorem 1 and Theorem 3, T has a best approximation in K(X, Y).

Recall that a Banach space X is said to have the compact approximation property if the identity operator on X is in the closure of K(X) in the topology of uniform convergence on compact subsets of X.

Corollary 5. Let X and Y be as in Theorem 4 and let (X, Y) satisfy the Basic Inequality. If either X or Y satisfies the the compact approximation property, then K(X, Y) is proximinal in L(X, Y).

Proof. Suppose X has the compact approximation property. Let $0 \neq T \in L(X, Y)$ and let K be a compact subset of X. Then for any $\varepsilon > 0$ there exists a compact operator T on X such that $||T_1x-x|| < \varepsilon/||T||$ for all $x \in K$. Now $TT_1 \in K(X, Y)$ and $||TT_1x-Tx|| < \varepsilon$ for all $x \in K$. This shows that K(X, Y) is dense in L(X, Y) in the topology of uniform convergence on compact subsets in X and hence in the strong operator topology. By Theorem 4, K(X, Y) is proximinal in L(X, Y). The proof of the other case is similar.

From Theorem 3 and Corollary 5, we have the following corollary.

COROLLARY 6. Let X and Y be closed subspaces of l^p and l^q (1 , respectively. If either X or Y satisfies the compact approximation property, then <math>K(X, Y) is proximinal in L(X, Y).

Chong-Man Cho

References

- E.M. Alfsen and E.G. Effros, Structure in real Banach spaces, Ann. of Math. 96 (1972), 98-173.
- 2. S. Axler, I.D. Berg, N. Jewell and A. Shields, Approximation by compact operators and the space $H^{\infty}+C$, Ann. of Math. (2), 109 (1979), 601-612.
- 3. _____, The Essential norm of an operator and its adjoint, Trans. Amer. Math. Soc. 261 (1980), 159-167.
- Y. Benyamini and P. K. Lin, An operator in L^p Without Best Compact Approximation, Israel J. of Math. 51 (1985), 298-304.
- C.-M. Cho and W.B. Johnson, A Characterization of Subspaces X of l^p for which K(X) is an M-ideal in L(X), Proc. Amer. Math. Soc. 93 (1985), 466-470.
- 6. M. Feder, On a certain subset of $L_1(0,1)$ and non-existence of best approximation in some subspaces of operators, J. of Approximation Theory 29 (1980), 170-177.
- J. Hennefeld, A decomposition for B(X)* and Unique Hahn-Banach Extensions, Pacific J. of Math. 46 (1973), 197-199.
- 8. R.B. Holmes, *M-ideals in approximation theory*, Approximation Theory II, Academic Press, (1976), 391-396.
- 9. R.B. Holmes and B. Kripke, Best approximation by compact operators, Indiana Univ. Math. J. 21 (1971), 255-263.
- R.B. Holmes, B. Scranton and J. Ward, Approximation from the space of compact operators and other M-ideals, Duke Math. J. 42 (1975), 259-269.
- 11. Ka-Shing lau, On a sufficient condition for proximity, Trans. Amer. Math. Soc. 251 (1979), 343-356.
- 12. A. Lima, Intersection properties of balls and subspaces of Banach spaces, Trans. Amer. Math. Soc. 227 (1977), 1-62.
- A. Lim, M-ideals of compact operators in classical Banach spaces, Math. Scand. 44 (1979), 207-217.
- 14. J. Mach and J. Ward, Approximation by compact operators on certain Banach spaces, J. Approximation Theory 23 (1978), 274-286.
- 15. R. Phelps, Uniqueness of Hahn-Banach extensions and unique best approximation, Trans. Amer. Math. Soc. 95 (1960), 238-255.
- 16. K. Saatkamp, Best Approximation in the Space of Bounded Operators and its Applications, Math. Ann. 250 (1980), 35-54.
- 17. R. Smith and J. Ward, M-ideal structure in Banach algebras, J. Func. Anal. 27 (1978), 337-349.
- 18. L. Weis, Integral Operators and Change of Density, Indiana Univ. Math.

Best approximation by compact operators

- J. **31** (1982), 83-96.
- 19. D. T. Yost, Best Approximation and Intersections of balls in Banach spaces, Bull. Austral. Math. Soc. 20 (1979), 285-300.
- 20. _____, Approximation by Compact Operators between C(X) Spaces, J. Approximation Theory 49 (1987), 99-109

Hanyang University Seoul 133-791, Korea