한 인구학도의 회고

  • Published : 1988.05.01

Abstract

This study examines the sampling bias that may have resulted from the large number of missing observations. Despite well-designed and reliable sampling procedures, the observed sample values in DSFH(Demographic Survey on Changes in Family and Household Structure, Japan) included many missing observations. The head administerd survey method of DSFH resulted in a large number of missing observations regarding characteristics of elderly non-head parents and their children. In addition, the response probability of a particular item in DSFH significantly differs by characteristics of elderly parents and their children. Furthermore, missing observations of many items occurred simultaneously. This complex pattern of missing observations critically limits the ability to produce an unbiased analysis. First, the large number of missing observations is likely to cause a misleading estimate of the standard error. Even worse, the possible dependency of missing observations on their latent values is likely to produce biased estimates of covariates. Two models are employed to solve the possible inference biases. First, EM algorithm is used to infer the missing values based on the knowledge of the association between the observed values and other covariates. Second, a selection model was employed given the suspicion that the probability of missing observations of proximity depends on its unobserved outcome.

여기서는 많은 수의 비관측사례로부터 발생할 수 있는 표본의 편의(bias) 문제를 탐구한다. 이 연구는 본래 일본 후생성이 1989년 실시한 <가족주기와 가구형태에 대한 인구학적 조사> 자료를 이용하여 노인부보와 자녀간 근접성을 분석하는 목적에서 이루어졌다. 그런데 <가족주기와 가구형태에 대한 인구학적 조사>는 노인부모를 대상으로 한 조사가 아니라 전체 가구 일반에 대한 조사이기 때문에 노인부모에 대한 많은 정보를 손상하고 있었다. 또한 본 조사는 가구주를 통하여 가족원에 대한 정보를 획득하는 방식으로 설계되었기 때문에 가족원에 대한 정보가 완전하지 못하였다. 나아가 비관측사례의 유형을 보면 여러 항목들이 동시적으로 관측되지 않고 있었다. 이와 같이 복합적 메커니즘에서 발생한 비관측 사례는 분석의 편의를 초래할 위험이 크다. 우선, 많은 수의 비관측사례로 표준오차를 잘못 추정할 소지가 크다. 더욱이 사례들이 선택적으로 관측되지 않았다면 관측된 자료에 따른 추정을 심각한 편의를 포함할 수 있다. 이와 같이 손상된 자료로부터 발생할 수 있는 추정 편의를 개선하기 위하여 여기서는 두 가지 기법을 활용하였다. 첫째, 관측치와 공변인간의 관계에 기초하여 비관측사례를 추정하는 방법으로 EM 알고리듬을 활용하였다. 둘째, 관찰의 선택성에서 비롯된 추정 편의를 개선하기 위하여 이단계(two stage) 모형을 활용하였다.

Keywords