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Dynamic Modeling and Real-Time Implementation of Control

Algorithms for a SCARA Type Robot
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Abstract

In this paper, we explore real-time implementation of various dynamic control algorithms,

which use the different levels of the information of the dynamics, using a SCARA type robot to
show the feasibility and effectiveness of such algorithms. For these purposes, the kinematics of the
SCARA type robot is analyzed and the manipulator-actuator dynamic equations based on
Lagrange mechanisms are derived. Experimental results indicate that computed torque technique
and iterative learning control methods perform better than classical PID control and that these

algorithms can be effectively applied to controlling industrial manipulators.

1. Introduction

As robot manipulators are increasingly used for
repetitive operations such as arc-welding and
cutting, they should have capability to track
continuous paths as closely as possible. However,
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due to the mechanical characteristics of a robot
manipulator such as high nonlinearity and coupl-
ing effects between joints, it is difficult to control
the robot manipulator precisely by conventional
control methods in high speed. To overcome
these difficulties, various control algorithms using
dynamic characteristics of the robot manipulator
have been proposed.[1'7] But in practice, due to
unknown parameters such as backlash, friction,
and nonrigidity, accurate dynamic model can not
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be obtained and also it is quite difficult to imple-
ment in real-time because the calculation time
increases as the degree of freedom of the robot
manipulator increases. Therefore, the perfor-
mance of dynamic control algorithms have been
proved only by computer simulations except a
few cases.[11:12]

In this paper, using a SCARA type robot, we
explore real-time implementation of various
dynamic control algorithms developed for the
robot manipulator to show the feasibility and the
effectiveness of such algorithms. For these
purposes, firstly, the kinematics of the SCARA
type robot is analyzed. Secondly, the dynamic
equations are derived and converted to the
equivalent dynamics with reference to the actuator
and finally added to the actuator dynamics.[”
Other important terms in dynamics such as viscous
friction and coulomb friction, which can not be
easily obtained using the above method, are found
by the experiments. Thirdly, a hysteresis current
controller is used for the torque servo control
This controller utilizes the property that the
torque developed by the actuator is proportional
to the armature current of the actuator.

In Section 2, the mechanics for the SCARA
type robot is derived. Also to compare the per-
formance of various control algorithms, classical
PID, computed torque technique, and iterative
learning control algorithms are briefly mentioned.
Real-time experiment and its results on tracking
accuracy under various speed conditions in the
Cartesian space are discussed in Section 3 and 4,
respectively.

H. Mechanics and Control Algorithms

In this paper, since two degrees of freedom
are sufficient to investigate the dynamic effect,
only two joints of the SCARA type robot, as
shown in Fig. 1-a, are used and its mechanics is
studied. The link coordinate systems are establ-
ished by the Denavit-Hartenberg representation
and the corresponding link parameters are derived
as shown in Table 1. The homogeneous matrix
&i-l which specifies the location of the ith coor-
dinate system with respect to the i-1th coordinate
system is defined as follows.

CcOsqy —sing; 0 licosq;
.o sing; cosq; O Ii sing;
i-1 0 0 1 0 (1)
0 0 0 1

(917)
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C——— 1

a. SCARA type robot

b. Top view

Fig.1. SCARA type robot and coordinate systems.

Table 1. Link parameters,

Joint q(®) a(*) d (mm ) £ (mm)
1 0 0 0 370
2 0 0 0 230

1. Kinematics

The kinematics of a robot manipulator is the
relationship between the Cartesian space and the
joint space without regard to the forces which
act or react to it and is classified into two categ-
ories, the direct and inverse kinematics.

First, the direct kinematics of the robot man-
ipulator is the representation of manipulator
position from the joint space into the Cartesian
space. From Fig. /I-b, the direct kinematics of
the SCARA type robot is geometrically obtained
as follows:

Py=1,cos(q,+q.) +1 cosq,
(2)

where Px and P_ are x, y components of the tip
of the robot hand in the Cartesian space, respec-
tively. q;, g, are joint values of the joint space.
1;, 1, are link lengths of the SCARA type robot.

Secondly, the inverse kinematics calculates
all possible sets of joint values from the given
values of the Cartesian space. In case of the
SCARA type robot, the inverse kinematics is
algebraically obtained by Eq. (2).

Eq. (2) can be rewritten as follows:

P,=1, sin{q,+q.) +1, sinq,

l;cosq,cosq;— l;sinq; sing,+1,cosq, = Py

1;sinq, cos q,+1; cosq, sing, +1, sinq, =P,
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After multiplying cos q,, sin q; to Eq. (3), (4),
respectively, the combination of two equations
can be rewritten as follows:

(5)

l,cosq, 1 I,= Py cosq,+ Py,sing

Similarly, by multiplying sinq, cosq; to Eq.
(3), (4), respectively, another equation can be
obtained.

l;sing;=  Pysinq,+ Pycosq, (6)

Combining the squares of Eq. (5), (6), we can
obtain the cosine and sine functions for q,

P4 Py K-
2L,

sing;= ARM V'] - cos’q,

(7)

cosq, ™

(8)

where ARM is the index which represents the arm
configuration of the SCARA type robot

+1
-1

if
if

right
left

ARM = arm

arm

Hence, from Eq. (7) and (8), q, is found to be

q, = atan2

(9)

cosq;

To find q,, multiplying Py, Py to Eq. (5), (6)
and combining two equations, the cosine function
is as follows:

Pilicos g+ Pl + Py, sing,

cosq; = [ ) (10)

Similarly, the sine function is obtained.
. P,l,cos g+ Pyli— Py, sing,
— 2yl 2 Y x12

sing, BLt Pt (11)

Therefore, g, is found to be
_ sing, |,
Q atanZ{COSq1 l (12)

2. Dynamics

It is well known that the dynamic equations for
a robot manipulator with n degrees of freedom
based on Lagrangian formulation can be described
as follows:

19884 84 & IIBEH L
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1= D(@)§+H (g -9 +Va+G(q (13)
where q is an nxl joint angle vector. D(q) is an
nxn symmetric and nonsingular inertia matrix.
H(q,q) is an nx1 vector specifying centrifugal and
Coriolis terms. V is an nxn diagonal matrix
specifying the viscous friction coefficients. G(q)
is an nx1 vector specifying the effects due to
gravity and external load. 7 is an nx1 generalized
input torque/force vector.

In this paper, to derive the dynamic equations
of the SCARA type robot, each link is modeled
to the I type beam having the uniformly distri-
buted mass (in Fig. 2) and geometric parameters
for links are shown in Table 2.

—7

n.

/

/L_

iﬁ#

Fig.2. Link model.

Table 2. Geometric parameters for links.

Parameter Link 1 Link 2
a (mm) 370 230
b (mm) 33 30
b’ (mm) 47 40
¢ (mm) 145 94
¢’ (mm) 101 51

Mass (kg) 7.5 4.0

Since joint axes of the robot arm are parallel
to the gravitational force, G(q) can be omitted
from Eq. (13) and solving the inertia matrix of
each link must be preceded in order to derive
D(q) and H(q,3). The inertia matrix, ]i’ of the
ith link is as follows:
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) , .
,o.f Xt dV, +m, ( 2 ) 0 0 —m(i)
0
0 o [ viav
Ji= 0 0 p.fzfdv. 0
*mi(%’) 0 0 m
(14)

where P Vi are the density and the volume of the
ith link, respectively. p; fvxdei p; fvyidei, and
p; fvz?dVi are the volume integrals about the
center of mass of the ith link and are found to be:

pi/\:)édvlz%af
3 s 3/ Y
p'[ yder—'M*b‘C'_H)‘ (Cl Ci)

12bici+b{ (ci—ci)
p‘[ 24V, = M, M bici”+bi (C?’Ci/)
v

C 1Zbe +H (e—cl)
From J; matrix, the components of D(q), H(q,a)
are obtained as follows:

(15)

2

DU _—kzmaxvi i Tr (URJJKU:'“) for i,j=1'2
(16)
2 2 .
H1 :gl 'ngUKQqu
17
2
Hin= Z:“ kTr(UmijmU:nl) for 1,}, k=1,2
m=maxiijsk!
(18)
where Ukj = aA](() /aqj’ §) ik = aqk, and

mj
Tr denotes trace of a matrix. The superscript
“t” denotes transpose of a vector or a matrix.

In general, to implement proper control algori-
thms, the above dynamic equations for the
SCARA type robot should be converted to the
equivalent dynamics with respect to the
actuator.[8:10]

Each joint of the SCARA type robot is driven

by a permanent magnet DC servo motor whose
characteristics are shown in Table 3.
Let the motor shaft angular position be Gk, the
angular speed be wy of the DC servo motor at
joint k ( k=1,2). The manipulator-actuator dy-
namics at the actuator shaft can be described as
the following equation:

(919)
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Table 3. Parameters for actuators
(PM DC motor),
Item Joint1 | Joint 2
Rated output(W) 200 60
Rated torque (kg-cm) 6.5 1.95
Rated speed(rpm) 3000 3000
Torque constant(kg-cm/A) 1.21 | 0.584
Rotor 1nerj11a(g~cm-sec ) L71 0.16
(superscript)
Viscous friction coefficient
(g-cm/rpm) 0.271 0.06
Mechanical time constant(msec) 4.8 5.3
Gear ratio 1:157)1:120
T=Jnewd Bpowt Folw) +* (19)

where

4~ [ely 62,”» W= [(Uh (Uzjl,
T= (T, Toit, = (¥, )

are 2x1 vectors representing the angular positions
of the motor, the angular velocities of the motor,
the torques developed by the motor, and the load
torques at motor shaft, respectively. J m,Bm are
2x2 diagonal matrices whose entries represent the
moments of inertia, the viscous friction coeffici-
ents of DC motors, respectively. Fc(w) is a 2x1
coulomb friction vector, the kth component of
which isf ok sign(wk) where f ck is constant. Each
joint of the SCARA type robot is coupled with
the harmonic gear. Because if friction and
backlash between the coupled gear teeth are
assumed to be negligible, the generalized torque/
force of the SCARA type robot, transferred to the
motor through the harmonic gear, is equal to the
load torque, 7*, gear ratio nk can be written as

follows:

*
T Gk
Tk M

(20)

Ny =

Let N = [nk] (k=1,2) be a 2x2 diagonal matrix,
then 7* = N7. On the other hand, the torque
developed by the permanent magnet DC motor
is directly proportional to the armature current.
thus,

T=Kr-1a
where

21

lam [im, iaz Jt
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is a 2x1 armature current vector. K.. is a 2x2
diagonal matrix and each diagonal element of Ky
represents the torque constant. After using the
joint angular position vector ¢ as variables in the
joint space, the manipulator-actuator dynamic
equations can be finally rewritten as follows:

L= K:' {J§+ Bat NH{q, @) +Fe (@) (22)

where
J=JuN"'+ND(q), B=BuN'+NV

are 2x2 diagonal matrices whose entries represent
the moments of inertia, the viscous friction
coefficients of the combined system, respectively.
On the other hand, because the coulomb friction
is solely determined by the direction of the
motion, the kth component of FC(Q) is:

fox sign (i) = foi sign (wi) (23)

In most cases, B, FC(Q) terms are dominant but
they can not be easily obtained analytically.
These terms are found by simple experiment.
If the manipulator is allowed to move only one
joint at a time by locking the other joint, the
dynamic equation for a single joint is described
as follows:

jax=Kin {Jicti+ Bit fox sign (Gt (24)
When angular speed reaches steady state for
constant current command, Eq. (24) can be
reformulated as the following equation:

lak= K7k {Biax *+ fex sign (QK) } (25)

If the joint angular speed is measured, then By and
f ck are easily obtained from the above equations.
According to Eq. (22), the parameter values of
the dynamic model for the SCARA type robot
are shown in Table 4.

3. Trajectory Planning

A common way of causing a robot manipulator
to move from one point to another point in a
smooth, controlled fashion is to cause each joint
to move as specified by a smooth function of time,
How to compute exactly these motion functions
is the problem of trajectory planning. In order to
force the end-effector to follow a geometric shape

19884 84 H { LEEHLE
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Table 4 . Model parameters for the SCARA

type robot.
-
Item Joint 1 Joint 2

J,,=3.18%107*+ J,=5.88x107"+

J(N m sec? 2.16x107 -car | 137107 -cas

m sec’) J=4.90% 107+ | Jn=2.45x10"°
1,08x10°° «cq,

B(N m sec) 2.94x107" 1.47x107"
—(2.17x107* * sq,

NH(q,4) (Nm) ‘s - gaH 1 08x107 - | 142X 1077 +sqp-a
sqs - 43)

Fe(g) (Nm) 8.33x10°* sign(g,) |5.39%107 sign(g,)

$q.; = sinq, €Q,= COSqQ,

through the Cartesian space the desired motion
must be converted to an equivalent set of joint
motions.[4] In this paper, the desired motion is
established to a circle in the Cartesian space. The
circle trajectory is one of widely used trajectories
in which the effects of the coulomb friction can
be observed when direction is reversed. Also, we
can observe the effects of the moment of inertia
which become the dominant term in the dynamic
equations when starting and stopping.

The block diagram for the trajectory generation
is as in Fig. 3

In this planning, ¢ is a linear function, which
is joined with the 5th order polynomial function
at the beginning and end of the motion, and
means the counter clockwise angle about the
circle. d¢ is the increment of ¢ during one sam-
pling time, dt. d¢; is the maximum value of d¢
and equal to dt. speed/R where R and speed are
the radius of circle and the maximum speed in
the Cartesian space, respectively.

4. Control Algorithms

The purpose of manipulator control is to
maintain the dynamical response of a robot
manipulator in accordance with some prespecified
system performance and desired goals based on
the dynamic model. To achieve these goals, many
control algorithms for the robot manipulator have
been proposed.“'ﬂ

In this paper, we briefly discuss three control
algorithms which use the different levels of infor-
mation of the dynamics of a robot manipulator.
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read three points &
speed (Cartesian space;

find the origin
radius (R) of circ

xyd &
e
determine direction
ot motion (direc)
T
starting stopping

l normal
dg = 5th order de ~da, T | [de-da,- Sthoder
polynomial Pflf 1 polynomial of t
L ]

I

‘ g - ¢ +ditecdy
X=x, +R cos ¢
Y=y, tR'sing
S S

[ q = inv_kin{xy)

R R T

qtt= — g
q(t) - q(t-dr)

Q= T

g no
complete

yes

Fig.3. Block diagram for the circle trajectory.

1) PID Control Algorithm

Since PID control can provide quick response,
good system stability, and small steady-state
errors in linear system, this control method is
widely used.

Let qd be the desired joint angle and q be
the actual joint angle. Assuming that each joint is
completely decoupled and independently con-
trolled, the control input u can be described as
follows:

u=K'v(<'1" ~4) +Ke(¢"—a@) +K, [lg®~q)dt (26)

where Kv’ K_ and KI are 2x2 diagonal matrices
which represent the derivative gain, the propor-
tional gain, and the integration gain, respectively.

2) Computed Torque Technique

The problems which lead to the difficulties of
controlling a robot manipulator are inherent
nonlinearity and high coupling. These mean that
much of linear control theory are not directly
applicable. Thereby, computed torque techniques
which are based on either the Lagrange-Euler
formulation or the Newton-Euler formulation have

(921)
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been proposed for robot control. Here, computed
torque technique based on the Lagrange-Euler
formulation is implemented.

The control input is:

u=K7" {J(§+Kv (@ —q) +Ke (g q) )+

Bg+NH(q, @) +Fc (@)t (27)
where K_ is a 2x2 proportional gain matrix, and
Kv is a 2x2 derivative gain matrix.

3) Iterative learning control algorithms

For the motion control of a robot manipulator,
various learning control algorithms have been pro-
posed recently to overcome the difficulty, i.e.
modeling error, which appears in the previous
control methods. In this paper, the following
learning control algorithms are discussed and
implemented.

Betterment Process: Arimoto and his colleagues
proposed a learning control method called
“Betterment Process”.[5:6] It consists of a linear
PD feedback control which make the robot
motion follow the vicinity of given desired
trajectory and additional input constructed by
learning to reduce the deviation between the
desired trajectory and the actual robot motion.
Here, the desired trajectory is given in angular
velocity profile and the convergency of this
algorithm was proved in the sense that the in-
tegrations of squared errors decreased through
iterative operations.

The input to control the SCARA type robot
at the jth operation is given as follows:
v =K (g’ —q)+Ky (¢ ) +v (28)
where K _ is a 2x2 position feedback gain matrix,
and K, is a 2x2 velocity feedback gain matrix.
And the additional input v has the following

form:

vV=vtglt—q¢) (29)
where ¢ is a 2x2 velocity learning gain matrix.

Model Algorithmic Learning Control: Another
type of an iterative learning control method was
proposed for dynamic systems with uncertain
parameters.[” The method, which adopted the
model algorithmic control concept[13] in the
iteration sequence was shown to be convergent for
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linear time-varying systems and to be applicable
for robot control systems.

For the control of SCARA type robot, the
control algorithm is as follows:

Define the 4 dimensional state vector X
X=(q¢,q")" (30)
When X d is the desired trajectory and the jth
model state, XJ’M, is updated by the following

method:

XM= XM A S (XX ) (31)

the control input at the jth operation is
determined as follows:

@ =Kz {(B", ] XM +Fc (¢} (32)

where S is a 4x4 constant weighting matrix.

II. Implementation

Fig. 4 represents the hardware structure for
evaluating the dynamic control algorithms.

Functions of each block are described as
follows:

A 16 bit super-microcomputer, SSM-16, based
on MC68000, is used as a host computer. Under
the UNIX operating system, the host computer is
used for the development of the control algori-
thms and loads execution program in common
memory. Common memory stores the execution
program and input-output data, which can be
accessed through VME-bus. The size of common
memory is 256 Kbyte. An MVME 110-1 single
board computer with a floating point coprocessor

Servo Computer
(MVME 110-1)

1

Comman Memory

[

Digital Servo Pack.

Counter | D/A Converter
¥
t
analog \,}'
Motor Controller Mator Controlier

l Motor 1 m

Fig.4. Hardware structure.

digital
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Fig.5. Block diagram of current controller

25 % # 8 5

MC68881 is used as the servo computer for
calculating the desired trajectory and the control
input by the execution program in common
memory.

A hysteresis current controllerlg] which can
control and limit the armature current of the
motor is used as the motor controller. The
hysteresis current controller is a nonlinear element
and its output depends on the signal e as shown
in Fig. 5-a. Let N(e) be the describing function
which describes the behavior of the hysteresis
current controller. The overall block diagram of
the motor and the motor controller is shown in
Fig. 5-6. Since N(e) is very large, iak can be appro-
ximated by ukKopk/Krk where Kopk is the
operational amplifier gain. As a result, the transfer
function can be simplified as shown in Fig. 5-c.
If K, is set to be equal to Kopk’ then i is
directly replaced by Uy

Digital servo package consists of three parts.
Those are feedback circuit, D/A conversion
circuit, and emergency check circuit. Firstly,
feedback circuit counts the pulse trains generated

Vi

K yia,

(a) Hysteresis current controller

(b) Complete transfer function

T +te, sign(Wy)

Wi
e

(¢) Simplified transfer function

and
motor at the kth joint.
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from the encoder of the motor for motor position
sensing and checks the direction of the motor
motion. Secondly, the control input calculated by
the servo computer is transformed into analog
signal by D/A conversion circuit, and is transferred
to the motor controller. Thirdly, emergency
check circuit checks the emergency signals such
as overrun, overcurrent, and overheat which may
be generated during the robot motion.

IV. Experiment and Evaluation

Now, in order to evaluate the performance of
each control algorithm, the desired trajectory is
the counter clockwise circle whose radius is 100
mm, and speed is 200 mm/sec and desired traje-
ctories transformed into the joint space are as

shown Fig. 6. The sampling time is set to 15
msec.[14]
Anglejdeg]
100-j
] ¢
50 —
o
4
-50 T —

T
30
time(sac]

37

(a) Desired joint angles

Velocity[deg/sec]
] 9
50 —| %
] /\
0
1 N
-50
1
-90 T - T

a0
time[sec]

37

o

(b) Desired angular velocities

Fig.6. Desired trajectories in the joint space
(speed 200 mm/sec in the cartesian
space).

(923)
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Firstly, experimental results on both classical
PID and computed torque technique were com-
pared. The gains for PID control are Kv=diag
[11, 20.5], K. = diag {41, 82], and KI=diag[7O~,
110]. And II()p=diag[850, 1200], and K =diag
[58.3, 69.3] for computed torque technique. Fig.
7-a shows the position error in the trajectory of
joint angle when speed is 200 mm/sec in the
Cartesian space. The position error of each joint
of computed torque technique is smaller than that
of classical PID control. The position error of
joint 2, which is dominantly influenced by the
coupling effects between joints in the SCARA type
robot is larger than that of joint 1. The tracking
result for the desired circle in the Cartesian space
is shown in Fig. 7-b. In cases of the other speeds
of the desired circle in the Cartesian space, similar

‘ error[deg]

| o(p)

N A
1 oc)
1 MW

15

[

T
3.0
time[sec]

a7

(a) Position errors in the joint space

//N
CI'M\

(b) Tracking result in the cartesian space
(scale = 0.25)

Fig.7. Experimental results

(pr PID control, c¢: computed torque
method).
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results are obtained as shown in Table 5. From
these results, computed torque technique which
uses the dynamic information of the robot
manipulator have shown better performance than
that of PID control.

Table 5. Maximum error in the joint space.

Maximum error (deg)
Speed (mm /sec) 100 200 300
Joint 1 2 1 2 1 2
PID 2.0 -17| 3.0{-40| 46|72
CTM -0.3 1.5 —-0.7] 2.2|~-L1L0 3.5
MALC —0.5 2.0y —0.5| 0.8(-—0.7 2.0
BP 2.6 | —3.2 2.7 3.2 2.5] —2.7

Secondly, performance evaluation for iterative
learning control algorithms was carried out for
various speed conditions. For model algorithmic
learning control method, the weighting matrix S
is chosen as S = diag[0.95, 0.9, 0.95, 0.9]. And

error[deg] Joint 1 srror[deg] Joint 2
1 .

25 % 8 8%

for betterment process, control gains are chosen
as K _=diag[13, 17], Kv=diag[6.5,8.5], and ¢
=diag71,3]. In the former case, in spite of in-
accuracies of modeling, the robot motion is
getting closer to the desired trajectory with fast
convergency rate by repeating operations as
shown in Figs. 8-a, b and c. In the other cases, the
maximum error of each joint is decreasing
similarly as in 200 mm/sec with the different
convergency rate as shown in Fig. 8-d and e. On
the other hand, in betterment process, the actual
robot motion converges the desired trajectory as
shown in Fig. 9, although the convergency rate is
slower than that in the former. The maximum
error for each control algorithm in joint space is
shown in Table 5. From Table 5, we can find that
when using iterative learning control algorithms,
the exact dynamic model is not always needed
to control a robot manipulator precisely.

V. Conclusion

This paper presented the implementation and
experimental result of dynamic control algorithms

maxje] {deg]

T T 10 T

30 37
time{sec]

(a) Position errors in the joint space

max|e] [deg]

T
3.0 a7 9
time{sec] keration

(b) Maximum error. vs. iteration

maxle| [deg}

(c) Tracking result in the Cartesian space
(speed = 200 mmy/sec, scale = 0.25)

(d) Maximum error. vs. iteration
(speed = 100 mm/sec)

L]
Heration iteration

(e). Maximum error. vs. iteration
(speed = 300 mm/sec)

Fig.8. Experimental results of model algorithmic learning control.

(924)
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errorideg] doint 1 encrideg] Joint 2 o ot [deg'/ec]
3 i 100
] 1 = ]
5 ) 5 -
] ;—\ - ]
b o ]
0] 5 o 3 50—
e n
5 5 » 1
1 N
1 o 1'5 3'0 37 0 ll.'l 310 a7 i ! J I T
’ “tmefsed] ’ “tmesed) ° s e ° 1&ation

(a) Position errors in the joint space

# ot [deg'/mec]

(b) Integration error. vs. iteration

[ea deg'roeg

(c) Tracking result in the Cartesian space
(speed = 200 mm/sec, scale = 0.25)

(d) (ntegration error. vs. iteration
(speed = 100 mm/sec)

T
12
heration

°
©
-
°

(e) Integration error. vs, iteration
(speed = 300 mm/sec)

Fig.9. Experimental results of betterment process.

using the SCARA type robot. For real-time
experiment, the manipulator-actuator dynamics
were derived and three control algorithms were
selected and compared to show the feasibility and
effectiveness of the dynamic control algorithms.
From the experimental results, we could confirm
that computed torque technique using the
dynamic information of the robot manipulator
performs Dbetter than conventional control
methods, Iterative learning control algorithms,
which have been proposed to overcome the
difficulty of obtaining exact modeling, track
the desired continuous path with some accuracy
through repetitive operations in various speeds.

Reference

[1] M. Vukobratovic, and D. Stokic, “Is
dynamic control need in robotic systems,
and, if so, to what extent?,” Int. J. of
Robotics Res., vol. 2, no. 2, pp. 18-34,
Summer 1983.

(925)

(2]

[3]

(4]

(s]

(6]

(71

(81

C.8.G. Lee, R.C. Gonzalez, and K.S. Fu,
Tutorial on robotics, 2nd Edition, IFEE
Computer Society Press, 1986.

R.P. Paul, Robot Mainpulators-Mathematics,
Programming, and Control, MIT Press,
1981,

J.J. Craig, Introduction
Mechanics and Control,
Publishing Co., 1986.

S. Arimoto, S. Kawamura, and F. Miyazaki,
“Can mechanical robots learn by them-
selves?,” Proc. of 2nd Int. Symp. Robotics
Res., pp. 127-134, 1984.

S. Kawamura, F. Miyazaki, and S. Arimoto,
“Iterative learning control for robotic
systems,” Proc. IECON’84, Tokyo, Japan,
pp. 393-398, 1984.

S.R. Oh, “A study on iterative learning
control miethods for the robot manipulator,”
Ph.D. Dissertation, KAIST, 1987.

C.H. Liu, “A comparison controller design
and simulation for an industrial mani-

to Robotics;
Addison-Wesley



pulator,” IEEE Trans. on IE, vol. IE-33, no.
1, pp. 58-65, Feb. 1986.

B.H. Kwon, H.J. Park, M.J. Youn, and T.Y.
Ahn, “Digital position controller of PM DC
motor for improving time optimal control
under the inexact load parameter,” Proc.
IECON’86, Milwaukee, Wisconsin, pp.
253-258, 1986.

J.Y.S. Luh, “Conventional controller design
forindustrial robots - A tutorial,””IEEE trans.
on SMC, vol. SMC-13, no. 3, May 1983,

K.P. Valavanis, N.B. Leahy, and G.N.
Saridis, ‘“‘Real-time evaluation control me-
thods,” Proc. of Int. Conf. on Robotics and
Automation, St. Louis, Missouri, pp. 644-
649, 1985.

(9]

[10]

[11]

P R OM|(EgR)

N 19624 4 12H%4. 19854 2 H
Mg didtm A7) geta Febabet
9 25, 1987 27 dxshs]
Ed A7) o At 35 4
Ahehe] 19874 3 A ~ 3
AFsrled A 9 AHAF

§%. Fa4 Yok zuelagl

=
1.

st} upabaty A

g B &WES/R)

1950%6 18 31H%. 1973% 2H
Agdfeta A7|gata g st
o HE. 19765 9 A ~1977F 12
A el= e ddgta A7)y ets
seAAtety A5 1978F 1 A
~1983% 8H == =|A1Z} oig

o A/ as) gebubalate AS. wA @ zte)
£ 17 9 AAFHY 2as FRARol: 2
e s

1988% 87 BT LEM#LE

E E R

B 2% H 8 ¥

[12] H. Hashimoto, K. Maruyama, and F. Har-
ashima, “A microprocessor-based robot
manibulator control with sliding mode,”
IEEE Trans. on [IE, vol. IE-34, no. 1, pp.
11-18, Feb. 1987.

R. Rouhani, and R.K. Mehra, “Model
algorithmic control (MAC) ; Basic theoretical
properties,” Automatica, vol. 18, no. 4, pp.
401-414, 1982.

D.S. Yoo, M.J. Chung, and Z. Bien, “Real-
time implementation and evaluation of
dynamic control algorithms for industrial
manipulators,” Proc. IECON’87, Cambridge,
Massachusetts, pp. 26-31, 1987.

[13]

[14]

* 8 B(FgH)
1943% 10A 11H4. 1969 2 A
Agdigtn Axpgsta ok @
H A5, 1972 lowarh 3 A7
FetdAleley 25, 19726 Towa
fst et Fatgabsty] #HE5

W 1975 lowa W3t A 7|3 Fatat
5. 1977 lowatl & A 7|3 A

Abere)
19814
19825
7144l
FAlojol 2, zuEx

o3}
.

Az,

W7 W A

of

(926)



