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A New Recognition Scheme for Orientation Determination
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Abstract

In this paper, a new two dimensional processing method is presented, which determines the
identity, position and orientation of a part. Matching between the object and model is performed
in the frequency domain. The DFT of the object contour is decomposed to estimate the orientation
of the object and to evaluate the similarity between the object and model. In this context, this new
approach is very robust with respect to noise and no preprocessing of the contour is required. Also,
this method has many advantages over the conventional correlation technique. With only a few
uniformly sampled points, this method can estimate the accurate orientation in an efficient manner
even in a noisy environment,

I. Introduction
known.

Visual information, tactile pressure,
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One of the first steps in an assembly task is
grasping of the part in the workstation. In the
grasping process, parts need to be identified and
their precise position and orientation need to be
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other sensory data can be used for recognizing
three-demensional objects. In this paper, we are
concerned with identifying and locating parts
by using a single image from a 2-D camera.

Several studies have been reported on this
problem. Much of the existing work has used
image space domain methods incorporating
template matching between the object and a
model of the object in the image domain.
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Perkins[” used straight lines and circular arcs

to represent the contours of parts and matched
images with a two-dimensional image model to
determain the identity, position and orientation of
a part. Yachida (2 used the centroid and a polar
representation of the boundary contour to
identify and locate parts. The system presented
in Dessimoz (3] js based on cross-correlation of the
tangent angle or the curvature as functions of the
curve length between the scene description and
the models. These approaches have produced
good results on some complex industrial scenes.
However, they are computationaly intensive, since
they require that many points be defined on the
boundary contour of a part for recognition and

accurate estimation of orientation. Another
method by Again [4] and Gleason '8! is based on
a sequential statistical pattern recognition

approach using high-level features of the parts.
This method is quite general, but it can be only
used to identify parts and requires another
technique to locate the part. More recently,
Turney 8117 cyganski '8 and Ayache !9 have
proposed new approaches to the problem.

Fourier descriptor methods reported by
Cosgriff “0], Zahn [11) and Wallace (2] have
been used to construct an invariant normalized
representation with respect to translation and
rotation of the contour. The Fourier series, or the
Discrete Fourier Transform (DFT) are used. This
invariant form has been successfully applied to the
two-dimensional shape recognition problem. e.g.
character recognition, airplane recognition, etc.
The approach described in this paper uses a
contour representation scheme similar to that
of Wallace 1121, But, Fourier descriptor methods
do not have the way of the orientation estimation,
which is very important in part-recognition task.
To estimate the orientation, in this paper, we
decompose the DFT coefficients into model
components and noise components rather than
constructing a normalized form as in the Fourier
descriptor methods. Noise components are
minimized to estimate the optimal orientation of
the object. This new approach has many adv-
antage over the spatial domain methods. With
only a few sampled points on the contour, this
method can generate a more accurate orientation
than the conventional correlation techniques.

This paper documents a complete system for
identifying and locating a part which is in a stable
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pose located on the workstation. Each part is
assumed to be isolated. In this case, the randomly
placed object on the workstation has only three
degrees of freedom: one for rotation and two for
translation. A block diagram of the method is
shown in Fig. 1. Boundary contours of parts are
extracted out of an image of the workstation. A
uniform sampling algorithm is used to extract
uniformly sampled boundary contour to evaluate
the DFT of the contour. The recognition scheme
matches the object DFT with the model DFT to
determine the identity, position and orientation.
This new approach is very robust with respect to
noise and no preprocessing of the contour is
required, since the matching is performed in the
frequency domain.

CID camera

image of warkstation

A

contour extraction

lists of corner points
A

uniform sampling

lists of uniformly
f sampled points

N-point FFT model library
object DFT reference DFT

recognition process

l

Fig.1. Block diagram of the part-recognition
system,

object position and

object idemityl orientati
n on

1. Representation of the Closed Contour

In representing the contour in the frequency
domain, we use a scheme similar to the method of
Wallace!12].  Consider a closed contour ¢ in the
complex plane, as shown in Fig.2. Trace this
contour once with uniform velocity v. Then, we
will obtain a parametrized representation of casa
cimplex function z(t), with parameter. t. Choose
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Fig.2. Representation of the closed contour in
the complex plane.

v so that the time T required to traverse the con-
tour is unity. If the contour is traced repeatedly,
we get a periodic function, which may be ex-
panded in a convergent Fourier series. We will
define a Fourier descriptor of ¢ to be the complex
Fourier series expansion of z(t).

z(t)= ¥ A(n) exp (j27nt)
n=00

1 2
A(n)= — fj z(t) exp (§27nt) dt
2 Jo

This representation depends on both the shape
of the contour and the starting point of z(t).
Actually, c is taken from a digitized image, and
thus z(t) is not available as a continuous function.
If z(k) is a uniformly sampled version of z(t) of
length N, the DFT provides the N lowest
frequency coefficients A(i).

N-
z(k) = ,Eol A(i) exp (j2@nk/N)
1=

N-1
z
k=0

A = 1 z(k) exp (§2mnk/N).
N

Then, z(k) «—— A(i).
DFT

The computation of this representation is fairly
straightforward, The contour of the image is
represented as a sequence of N x-y coordinates
which are derived from edge data. Here, we
again remark that this contour be sampled un-
iformly. Thus, the length of the contour is
computed first, and the contour is sampled at a
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spacing chosen to make the total number of
samples, N, a prespecified number which is chosen
to be a power of 2 for convenience. Then, the
representation is computed by using an FFT
implementation of the DFT of this sequence.

Il. Shape Matching

We investigate the matching between the
reference contour and the object contour, when
the object contour and the reference contour are
not exactly the same, but similar enough to be
identified as being of the same shape. Also, we
assume that the object contour is randomly
positioned and oriented, scale-changed and in-
itialized from an arbitrary point.

Suppose that the object contour and the
reference contour are represented as lists of
uniformly sampled points, {b(k)}oN'1 and
{r(k)}ON'l. Then the DFTs of the object contour
and the reference contour are defined as
{B(i)}oN'l and {R(i)}ON'l, respectively.  First,
we normalize the position and the scale. To
normalize position, we simply set the zero-coeffic-
ient of the DFT equal to zero. Then, the centroids
of the object and reference contours are located
at the origin of the coordinate system. Scale
normalization can be accomplished by dividing
each coefficient by the magnitude of the first
coefficient. This yields normalized DFTs of the
object contour and reference contour as follows:

A(0) =0
A(i) =B(i)/ |B(1) | fori=I to N-1
M(0) =0
M(@) =R(i)/R[|R(1)|fori=1 to N-1

Suppose that {a(k)}ON'/l is the inverse DFT of
{A(i)}ON'1 and {m(k)}oN'l is the inverse transfor-
mation of {M()tgN"!. Then, {a(k)}oN! is the
normalized object contour and {m(k)}oN'l is
the normalized reference contour. In the
spatial domain, we decompose the normalized
object contour into the rotated and starting-
point shifted versions of the normalized reference
contour {m’(k)}ON'l and the error sequence
{e(k)}oN'1 In this case, the magnitudes of the
error sequence are the distances between the
uniformly sampled points of {a(k)}ON'1 and
{m’(k)}ON'l. The error is minimum when the
normalized reference contour is correctly rotated
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and starting-point shifted to fit into the norm-
alized object contour. If we assume that error
sequence {e(k)iON'1 is a zero mean Gaussian white
noise sequence independent of the sequence
{m’(k)}oN'1 the problem of “optimal’® can be
formulated as a least square problem. Define:

a(k) = m’ (k) + e(k) for k = 0 to N-1,

then the expectation of I le(k)| is minimized
by proper choice of (m’(k)}ON'1 which is a
contour synthesized by rotating the normalized
reference contour by Br and shifting the staring
point of the reference contour by § points. We
refer to {m’(k)}ON'1 as the optimally aligned
version of the normalized reference contour
according to the objective of minimum mean
squared error. X|e(k) |2 is the summation of the
squared distances between uniformly sampled
points of the normalized object contour and the
optimally aligned version of the normalized
reference contour, As such, the matching between
the reference contour and the object contour is
reduced to the estimation of the optimal orient-
ation Br and the evaluation of X | e(k) |2, which
is a similarity measure between the object and
the reference contour.

In the frequency domain, the decomposition is
as follows:

M(i) = M' (i) + E(i) fori=1 to N-1,

Due to Parseval’s relation, the above equation
minimizes £ | X(@) |2. Also, {M’(i) }ON'I is the
DFT of {m’(k)}ON'l. Using the properties of the
DFT, we have the following relations:

| M"(A) ] = | M(i) | and

arg [M' ()] = arg [M()] + 6, - 2mBi/N

for i=1 to N-1

where 0r is the optimal rotation and § is the
optimal starting point shift.

Since the starting point shift, 8, is in the range
of {O,N-1}, we may define Gs = 2mB/N, such that
0X Gs>2 7. Then, we have

arg [M' (i) ] = arg (M()] +6_-0i

for i=1 to N-1,
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where 0 ¢ is the optimal starting point angle.

Since {E(i)}ON'l and {M'(i)}ON'l are indepen-
dent and orthogonal, {M'(i)}ON-l can be inter-
preted as a minimum squared error approximation
to {A(i)}ON". To evaluate the correct estimates
of 6, and 0, we have to select the two best
approximations among N-1 approximations. Since
the {E(i)}oN'1 are the DFT coefficients of the
white noise error sequence, the phase angle of
A(i) can be more accurately approximated by the
phase angle of M’(i), when the magnitude of A(i)
is large for a certain spatial frequency i. In other
words, the DFT coefficient, whose magnitude
is large, contains relatively less noise than the
other coefficients.

To calculate the optimal orientation, two
coefficients whose magnitudes of the object
DFT are largest among the N-1 coefficients are
selected as A(f;) and A(f,). Then, M’ can be
approximated as M’(f; )=A(fy) and M’ (f3)=A(f,)
and we have the following equations:

arg [A(f}) } =arg [M(f;) 1 +0 -6, 1,

arg [A(fy) | =arg [ M(f,) 1 +6, -0, f,.

From the above equations, we can solve for the
optimum starting-point angle and the optimum
rotation. Since Br and GS are 2w periodic, the
solution is not necessarily unique. The solutions
are:

2n(-1)

201

0.G) =0(1)+

for j=1 to m,

where m=min (| f;-f, | ,N-| £;-f, |)

8. (1) = arg(A (f;)]~arg{M (f,)}~arg[A(f,)] +arg[M ()]
§ f,—f,

The corresponding solution of Gr for each GS:

0,G) = arg [A(f1)] - arg [M(f;)] +6,G) f

for j=1 to m.

The next step is to select the optimal orient-
ation among the m solutions given above. Thus,
we evaluate a similarity measure between object
contour and reference contour., We choose the
similarity measure to be defined as 2 | e(k) I 2
To calculate this, we calculate M’, based on the
estimated Bs and ()r.
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Z |e) |2 =E | EQ) |?

=2 | AG) -M (i) |?
where M’ (i) = mag [M(@i)] exp{j(arg{M({]+

0r - 05 ).
For each pair (@ & Br), we calculate a similarity
measure. Among these calculated similarity

measures, we choose, of course, the least one.
Also, the optimal orientation is 0r for the least
similarity measure.

IV. Implementation

Fig. 3 shows the block diagram of the part-
recognition system, based on our approach. The
picture-taking and contour extraction are per-
formed by the GE optomation system [13] and
a list of corner points are extracted for each
contour. To form the DFT representation, a
uniform sampling algorithm is applied to the
list of corner points. Also, for the global recogn-
ition of parts, contours are smoothed by win-
dowing the DFT coefficients. Among the
coefficients, the zero-frequency coefficient is
saved as the position (centroid) of the part
contour.

i K corner points
—

uniform sampling
N uniformly sampied points

zero-frequency
N-point FFT coefficient

smoothing

POSITION

model library

¢N12 low-arder coefficients

matching

OPTIMAL
ORIENTATICN

SIMILARITY
MEASURE

Fig.3. Diagram of vision processing.

1. uniform sampling

The contour has been commonly represented
by a chain code. However, approximating a
continuous contour by a piecewise-linear function
such as a chain code does not result in a uniform
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sampling of the contour, since portions of the
actual contour which are not directly represen-
table by a chain code are shorter than the peri-
meter of the corresponding chain code. This can
be viewed as an error in sampling density, and
can result in significant variation in performance
as a function of the orientation of the picture. In
this study, however, the contour is represented
by a list of corner points. Then, we assume a
straight line between the contiguous corner points
and obtain approximately uniform sampling.

Suppose the contour is represented by a list of
K corner points {(xi, yi)>lf. The idea to find the
jth point on the uniformly sampled contour is
such that the length from the starting point to
the jth point is equal to the uniform spacing
multiplied by j. The way to calculate the N
uniformly sampled points {(xj’, y~')}}q on the
contour represented by {(xi, yi)}1 1s as follows:

The length of each line segment between corner
points i and i+1 is,

= 2 2
D= Y Xjpp - XP" + Yy - Y

for i=1 to k-1

The length from starting point to ith point

i-1
D

P.=
52

—

Then, the perimeter of the contour is Py.
In order to find the uniformly sampled points on
the contour, the first step is to calculate the
uniform spacing of the uniformly sampled contour

d=Py/N

Then, the following STEP A and B are repeated

for j=1 to N with the initialization i=1.

STEP A If D, <{j d then i=i+] and go to STEP A
else go to STEP B

STEP B calculate the uniformly sampled points:
_ Ja-Pig
Xje = 5. (Xi'xi-1)+xi
i
ig - P
Y. = . ) +Y.
j p, (Y;-Y;,
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2. Contour Smoothing

For the global recognition of parts, each shape
should be smoothed using low pass filtering. In
fact, the smoothing effect can be achieved by
windowing the DFT. Shown in Fig. 4 are the
contours derived from the inverse DFT trans-
formation, respectively, using N/4, N/2 and 3N/4
low-order complex coefficients of the T-shaped
object. In this experiment, we found that 16
coefficients ( * 8 harmonics) were sufficient for
the global recognition. Thus, when calculating the
similarity measure, we use only N/2 low-order
coefficients.

- N FEIR IR PRI IE SO
4 .
+ ,‘ + . 4
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*‘ + e ‘¥ s e
* 4+ +
+ o+ +
+ o+ 44 PO
40 + 4 3+
+ + + e 4 4
4 + - - + -
E + + + 4 +
‘4 PR + .

(¢) 24 coefficients

3N/4

(b) 16 coefficients
N/2

(a) 8 coefficients
N/4

Fig.4. Contours obtained from inverse transfor-
ming the low-order coefficients of T-shape.

V. Experimental Results

The accuracy of the estimated orientation was
tested for various numbers of uniformly sampled
boundary points. Fig. 5 shows contours of the U-
shaped object with different numbers of contour
sampling points. For this test, the object was
relocated at several orientations (0, 30, ..., 330
degrees) by robot manipulator and contours were
recognized using 4-point, 8-point, 16-point and 32-
point contour samples. Table 1 shows the results
of the test.

The use of 4 boundary points did not provide
any reasonable estimate of the orientation. But,
with 8 or more boundary points reasonable
estimates of orientation were obtained. Even with
8 points, the average orientation error is only
about 0.54 degrees. With 16 and 32 points, the
accuracy slightly increased. The accuracy of the
estimated orientation is very important because
it is directly related to the accuracy of the
similarity measure.
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Fig.5. Contours of the U-shaped object, unifor-
mly sampled by 32, 16, 8, 4 point.

Table 1. Estimation of the orientation by4-point,
8-point, 16-point and 32-point boundary
samples.

rotation estimated orientations
4-point 8-point 16-point 32-point

30 34.94 30.31 29.43 28.45

60 50. 14 59.22 58. 87 60.31

90 68. 95 90. 80 90.19 89. 26
120 96. 98 121.31 121.01 120. 50
150 118. 30 149. 90 150. 62 149. 83
180 68.41 179.77 179.78 179.65
210 267.97 211.02 210. 57 209. 95
240 279.25 240.61 239.48 239.37
270 191. 17 270.17 269. 67 270. 14
300 223.98 299. 40 300. 33 300. 14
330 244,08 330. 21 330.29 329.73

average

error 0.54 0.50 0.43

Insensitivity of the estimation to the shape of
object was tested by using an object with complex
shape, shown in Fig.6. For 8-point, 16-point, 32-
point contour samples, each average error of
estimated orientations was shown as 3.21 degrees,
0.58 degrees, 0.43 degrees, respectively. Through
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Fig.6. Contour of a complex object and its
uniform sampling by 32, 16, 8 point.

this test, the performance of the algorithm was
proved to be almost insensitive to the shape of an
object.

The similarity measure between objects were
tested next. Fig.7(a) shows the four objects
used in this test: a T-shaped objects, a block and a
U-shaped object. In the identification process,
only the low-order coefficients of the DFT are
used for global recognition. Thus, the object
shapes actually matched are shown in Fig.7(b).
The contours are efficiently smoothed by this
simple method. For the test, the objects were
reoriented several times (0, 30, ..., 330 degrees)
and were matched to the model of T-shaped
object. Table 2 shows the values of the similarity
measures 2 | E() |2 between the three objects and
the model for 8-point, 16-point and 32-point
boundaries, where the 8-point 16-point and 32-
point contours use only 4, 8 and 16 low order DFT
coefficients, respectively, The relative similarity
ratio is calculated as X| A(i) |/ Z| E (i))].. As shown
in the results, the T-shaped object showed high
similarity to the model T-shape, while the block
and the U-shaped object had low similarity. 8-
point, 16-point or 32-point contour could be
used to recognize the shape, but the similarity
measures for 8-point contour were very in-
consistent. This inconsistency probably resulted
from ifaccuracies in calculating the object

New Recognition Scheme for Orientation Determination

(989)

131

-
+

4 [
+ Ty : *
A - r * +
. PRI & ror
4 . + v a
* + o v N
+ r +
+ + *
+
4 ,: roo+
+ + . o
-+ + ¥ ' M
-

. . r VoL
I
. e or + v

+ * +
+ e b s * T+ ¥
4 e
.t *

Fig.7. Three test objects for the similarity mea-
sure and their Contours after Smoothing.

centroid. With only 8 points, the centroid of the
contour is very sensitive to the selection of the
uniformly sampled points and in turn, the object
contour is not appropriately aligned with the
model shape in the matching process. The 32-
point contour had the most consistent similarity
measures. The 16-point contour showed fair
performance. If speed is the most important
factor, 16 points might be best to use.

The recognition system was implemented on an
IBM AT. The speed of the matching process was
independent of the complexity of the shape, but
the speed of the uniform sampling process was
dependent on the number of object corner points.
Table 3 shows the computational speed of the
uniform sampling and the recognition system.

VI. Conclusions

To identify and locate parts, a new two dimen-
sional processing method was developed. Shape
matching between the part and the model is
performed in the Fourier domain. The DFT of the
object contour is decomposed to estimate the
orientation of the object and evaluate a similarity



132 19884

Table 2a  Similarity measure of the test objects to
T-shape by 8-point boundary sgmples.

T-shaped Key Block  U-shaped

Similarity measure

average 0. 064 0.077 154 1.63

maximum 0.175 0.160 1.54 1.74

minimum 0.019 0.041 1.49 1.50

deviation 0.044 0.039 0.03 0.08
Relative similarity

ratio

average 13.31 11. 54 2.39 2.32

maximum 21.56 14.68 2.42 2.42

minimum 7.07 7.33 2.35 2.24

deviation 3.81 2.51 0.02 0.06

Table 2b, Similarity measure of the test objects to
T-shape by 16-point boundary samples.

T-shaped Key Block  U-shaped

Similarity measure

average 0.055 0.064 1.56 1.76

maximum 0.076  0.110 1.60 1.88

minimum 0.044 0.036 1.49 1.67

deviation 0.015 0.025 0.05 0.07
Relative similarity

ratio

average 12.89  12.20 2.37 2.24

maximum 14.19 1530 2.4 2.30

minimum 10.78 8.74 2.34 2.17

deviation 1.21 2.34 0.04 0. 04

Table 2¢. Similarity measure of the test objects to
T-shape by 32-point boundary samples.

T-shaped Key Block  U-shaped

Similarity measure

average 0.076 0.135 1. M 2.16

maximum 0.088 0.160 1. 96 2.35

minimum 0.064 0.098 1.91 2.09

deviation 0.008 0.023 0.02 0.04
Relative similarity

ratio

average 11.28 8.52 2.23 2.11

maximum 12.30 9.93 2.25 2.15

minimum 10.47 7.75 2.22 2.07

deviation 0.58 0.78 0.01 0.02

Table 3a, Computation speed of the uniform
sampling per one object.

number of

corner points 16-point 32-point
10 14ms 24ms
20 22ms 30ms
30 28ms 36ms
40 34ms 42ms

8H ETIEBGHE
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Table 3b, Computation speed of the recognition
system per one object.

16-point 32-point
FFT 38ms 92ms
matching 14ms 25ms
measure. In this context, the method appears to

be insensitive to noise and does not require
preprocessing of the boundary contour. Also,
by using an FFT implementation of the DFT
algorithm the recognition speed is very rapid. The
experimental results indicate that the algorithm
is very accurate in estimating orientation. With
only 8 uniformly sampled points, we estimated
orientation more accurately than with conven-
tional correlation methods in the spatial domain.
Since the approach is based on matching in the
frequency domain, it is effective for the global
recognition of the object shape. Also, the speed is
fast enough for many real-time part handling tasks.

Reference

[1] W.A. Perkins, “A model based vision system
for industrial parts,” IEEE Trans. Computer,
vol. C-27, pp. 126-143, 1978.

M. Yachida and S. Tsuji, “A versatile
machine vision system for complex indu-
strial parts,” IEEFE Trans. Computer, vol.
C-26, pp. 882-894, 1977.

J.D. Dessimoz, “Recognition and handling
of overlapping industrial parts,” Proc. 9th
Int. Symp. Industrial Robots, Washington,
DC, pp. 357-336, 1979.

G.J. Agin and D.O. Duda, “SRI vision
research for advanced industrial autom-
ation,” Proc. 2nd U.S.A./Japan Computer
Conf., pp. 113-117, 1977.

G.J. Gleason and G.J. Agin, “A modular
system for sensorcontrolled manipulation
and inspection,” Proc. 9th Int. Symp.
Industrial Robots, Washington, DC. pp. 57-
70,1979.

J.L. Turney, T.N. Mudge and R.A. Volz,
“Experiments in occluded parts recogn-
ition,” Proc. Electro-Opt. Eng., vol. 449,
part I1, pp. 719-725, 1983.

[2]

{31

(4]

[51

[6]



A New Recognition Scheme for Orientation Determination

[7] J.IL. Turney, T.N. Mudge and R.A. Volz,
“Recognizing partially occluded parts,”
IEEE Trans. Pattern Anal. Machine Intell.,
vol. PAMI-7, pp. 410-421, 1985,

D. Cyganski and J.A. Orr, “Applications of
tensor theory to object recognition and
orientation determination,” IEEE Trans.
Pattern Anal. Machine Intell., vol. PAMI-7,
pp. 662-673, 1985,

N. Ayache and O.D. Faugeras, “HYPER:
A new approach for the recognition and
positioning of two-dimensional objects,”
IEEE Trans. Pattern Anal. Machine Intell.,
vol. PAMI-8, pp. 44-54, 1986.

(81

(9]

133

Columbus, Ohio, Rep 820-11 ASTIA AD
254 792, Dec. 1960.

[11] C.T. Zahn and R.Z. Roskies, “Fourier
Descriptors for plane closed curve,”
IEEE Trans. Computers, Vol. C-21, pp. 269-
281, 1972.

[12] T.P. Wallace and P.A. Wintz, “An efficient
three-dimensional aircraft recognition
algorithm using Normalized Fourier Des-
criptors,” Computer Graphics and Image

Processing, 13, pp. 99-126, 1980.

[13] GE, “Pn-2304 Optomation II theory of
operation manual,” Intelligent Vision
System  Department, General Electric

[10] R.L. Cosgriff, “Identification of shape,” Company, Syracuse, New York, 1983,
Ohio state University Res. Foundation,
E E B
B ¥ mEgR) £ % BHUEeR)
1958% 2 A 6 H4. 19804 o4l 19524 104 2787, 19816 A4
st Aabgetat £9f, 19824 gietm A v)gEkat el 19850
oA Acheta kgl AApgatz & oddhem eyl A ee s
d. 19874 ¥ Case Western Re- al, & cdAdesla oielel A7
serve University. Electrical Eng- - FEk Ak, Ak ol
ineering and Applied Physics 3-8+ ’ . A ol FaAl el #bE
ANESRINE Al LA g4 Aeled el Ao}, Machine Vision, Signal Processing 59!,
T Al Hoki= Computer Vision, Pattern Recognit - N
ion, Al S9l.
o ¥ 5 Wues)
19324 84 17HH:. 1957 &l
B @ t(EgR) Abzbetin £9). 1964% vl el
19519 87 4 H4. 19745 <4 23 sl E9l. 19694 Cana-

Z0d
£

4, 1979

o) £

o &b
o4 4 of ot

# 7|53t a}
o sk
3, 19884 0411]5}]?’2‘1»_;,7_ okl A 7|
by} Falalalakg] _ﬂ_g_ 19845F-
=%

4

.
gid

B —‘f:"k = Machxne

#2453}, Image Processings

.Eo]

(991)

da, Univ. of Saskatchewan th )
y 4 Fettab shel S, 19644 ~
19674 slFAbgew #H7isahs
19695 ~ 19715 Canada, Saskatchewan tf
5}9] post doctoral Research Fellov{non-linear sys-
tem control and stabilityell 3} -7 4=8), 19715F
~19724 TR A Tle Rt 19724 ~1982
b spekeda Aol el 19834 ~19874:
:J—,Hz«]]x{ o] Fa A Ha FAAH AFa

Fap Al ol zp%Z o] Robotics 9.

[

~
g

Bl



