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A Robust Discrete-Time Model Reference Adaptive Control

in the Presence of Bounded Disturbances
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Abstract

In this paper, a robust discrete model reference adaptive controller is proposed using a

generalized model reference adaptive algorithm for single-input single-output discrete systems. A
signal dependent time-varying dead-zone is employed in a generalized adaptive control structure,
This adaptive controller is shown to assure the boundedness of the signals of the system even in the

presence of bounded external disturbance.

I. Introduction

Much effort has been devoted in recent years to
the design of model-reference adaptive control
schemes, with the principal aim of establishing
that the resulting systems are globally asymptoic-
ally stable. In order to achieve this objective, it is
necessary that a great deal should be assumed
about the plant transfer function which is never
precisely available in practice. Moreover in reality,
a real system is always subject to the effect of
bounded external disturbance or unmodeled
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dynamics. Therefore in 1980s several different
approaches concerning robustness in adaptive
control have been proposed in the literature but
it is still unsolved research field in adaptive control
theory. Among the many modifications of
controller Parameter adaptation law which have
been suggested for adaptive control of an unk-
nown plant in the presence of disturbances, three
have gained wide acceptance. In [1] and [2]
Peterson and Narendra, and G. Kreisselmeir and
B.D.O. Anderson used a dead-zone in the con-

troller parameter adaptive law to assurc
boundedness of all the signals in the adaptive
system. More recently, Annaswarmy and

Narendra [3] suggested a somewhat different
adaptive law using a dead-zone which requires
less prior information regarding the disturbance
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and provided greater flexibility in design. A
second modification suggested by Kreisselmeier
and Narendra [4] as well as by Egardt in [5],
restricts the search region in parameter space by
using prior information regarding bounds on the
desired controller parameter. A third modification
due to Ioannou and Kokotovic [6], generally
referred to as o-modification, introduces an
additional term of the form -0f in the adaptive
law for adjusting the controller parameter vector .

In this paper, to give a robustness to the model
reference adaptive control in the presence of
bounded external disturbance, a new dead-zone
method is proposed. In this method, the size of
dead-zone N, in [2] is replaced by a term
dependent upon both ¢ (k) and n, where ¢ (k)
is a filtered regressor signal vector and n, is the
maximum value of bounded external distrubance.
This proposed method is shown to be able to
assure the boundedness of all the signals in the
adaptive system. One of the major features of
this proposed dead-zone method arises from the
fact that when the level of signals is larger than
that of bounded external disturbance the dead-
zone decreases but the dead-zone increases when
the situation is reversed. From the results of
computer simulation, it is also seen that the
proposed dead-zone method has more improved
output response than the fixed dead-zone method
which uses the same control structure.

II. Adaptive Model Reference Control for
Deterministic Case

In this section, we introduce adaptive control
structure considered by Narendra et. al [8] for
deterministic case. A single-output discrete linear
time-invariant plant is described by the state
equation

Xp (k+ 1) = Ap Xp (1'() +bl‘ up (k)

ye (k) =crxe (k) (1)

where A_ is nxn unknown constant matrix, b
and c, are unknown constant vectors. The
transfer function of plant is represented by

NP(Z)

We (Z) =ke Dp(Z)

(2)

where W_ (2) is proper, with D_ (z) a monic
polynomial of degree n, N (z) a monic stable
polynomial of degree m < 'n, and kp a constant
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gain parameter. A reference model which is
desired from the plant when this is augmented by
a suitable controller is given by the transfer
function

N (z)
D (2)

Wi () =K (3)

where D (z) and Nm (z) are monic stable polyn-
omials of degree n and r <X m respectively and km
is contant. Hence the relative degree of the model
is assumed to be greater than or equal to that of

the plant. The reference input r(k) to the model
is specified and is assumed to be uniformly
bounded.

The objective of control is to determine up (k)
such that

yr(k) —ym(k) =+ 0 as ko0

and to make all the state variables bounded. Since
for m <X (n-1) the transfer function of model
Wm (z) may not generally be strictly positive real,
some auxiliary inputs have to be fed into the
reference model.

As shown in Fig. 1 two identical auxiliary
signal generators of dimension n-1 having state
variables v, (k), v, (k) and inputs up (k) and
y., (k) are used in the controller structure. If a
vector w (k) is definded as

w k) "= (vi ()7, v ()7, ye (k)] (4)

the control input up (k) into the plant may be
represented by

up (k) =ko (k) r (k) + 8 (k)" o (k) (5)

where 8 (k) is defined by

0(k)T:[Cl (k), "t Cnoa (k), d (k), oy dnoy (k),
do (k)] (6)

and < (k), d, (k), d. (k), j=1,2,..., n-l are the
parameters used for implementing the auxiliary
signal generators as in [8].

For simplicity, it is assumed that k =km=l,
so kg (k)=1. Then for constant values of 8, the
overall transfer function of the controlled
system is W(z) where

W (z)

- We (Z)
1+W, (@) +W, @)W, (2)

Ny (z)N(2)
= [N(2) +C(2)]Ds (z) +N;: () (D (z) +d.N @)]
(7)
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where the transfer functions of the auxiliary signal
generators 1 and 2 are

C(z)

wl(z)=N(z) (8)
W, (2) —dot g_g) (9)

respectively for constant values of 8. In order that
the overall transfer function have the same zeros
as the moel, N(z) is chosen to contain Nm (z)
as a factor.

Thus if D_ (z) and N__ (z) are coprime and zeros
of Nm (z) are the poles of auxiliary signal
generator, there exists a unique controller para-
meter vector 8* such that when 8 (k) = 8* the
transfer function of the plant together with
controller matches that of the model by the
lemma 2 of [8].

MODEL

PLANT

e

” T Aux. signal Aux. signal
wik) l gen. 1 L gen, 2 —]
Fig.1. A general adaptive model reference

Up

control structure.

II. A Generalized Adaptive Model Reference
Control Algorithm

Let the controller parameter 8 (k) be expressed
as

6(k)=6*+ o) (10)

where ¢ (k) represents the parameter error vector
at time k. As shown in Fig. 1 the model output
Ym (k) can be expressed as

Ym (k) =Wn (2) r (k) + Wy (2) w (k) "8 (k)
“Wn(z) L(z) 6(k)"L(2)"" w (k)
=Wn(2) r(k) +Wn(2) 0 &) (0*+ (k)
—Wn(2)L(2) (6*+¢K)"L=) " wk)
(1)

(1620)
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With the equality Wn(z)L(2)6* L (z) "' W (k)

=Wn(z) 6*7 W (k),

Ym (k) =W (2) r (k) + Wi (2) o k)T ¢(k)

~Wn(z) L) ¢k)"L(z)"wk) (12)

Since when 6 (k) = 8* the transfer function of the
overa]l system matches the model, the plant
output Yp (k) can be expressed as [8]

ye(k) =Wn(z) r (k) +Wn(z) wk)"¢k) (13)

Therefore, output error e(k) between plant and
model can be expressed as

e(k) =yr (k) —ym (k) =Wn(z) L (2) p(K)"L(z) " w (k)
(14)
System structure equivalent to Fig. 1 in error

analysis is shown in Fig. 2 where L(z) is a
prefilter such that

L{z) " ek =¢k) (15)

w e(k

Ll Lo M g L(z) W (2) l
Fig.2. The error model equivalent to Fig.1 for

error analysis.

Then a constant gain generalized parameter
adaptation law is employed as [9]

1

2
6 k) =6 (k=D —TI ¢k—1) ek—1)

0(1():'1% (k)+01 (k)
r=r">0

Algorithm : 6p (k) = —ul” £(k) e(k), u«>

(16)

As shown in (16), the controller parameter 6 (k)
consists of both a proportional term 6_ (k) and
a summation term 0i (k) up to k-1. The parameter
error vector ¢i (k) is defined as

& (k) =6, (k) — 6* (17)
Therefore
$(K) =—pul" §K) e(k)+¢ (k) (18)
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The overall system structure for error analysis by
using this parameter adaptation law is shown in
Fig. 3.

L(z)Wa(2):SPR

— ¢ (k)

Fig.3. An equivalent error model with para-

meter adaptation law (16)

IV. Adaptive Control in the Presence of Bounded
External Distrubance

In this section, we are going to deal with the
robustness problem of the adaptive system by
modifying the parameter adaptation law to assure
the boundedness of all signals in the presence of
bounded external disturbance.

Now we express the plant as

xp (k+1) =Ap xp (k) +bpup (k)

yr (k) =cp"xp (k) +n (k) (19

where n(k) is the bounded external disturbance.
In the similar approach as the deterministic
case we can obtain following equations.

ye (k) =Wn (2) r (k) +Wn (2) (k)" @ (k) +n, (k)
(20)

Ym (k) =Wn(2) r (k) +Wa(z) (k)T w k)
—Wn(z) L(2) ¢(k)" (k) (21

where n; (k) is the effect of disturbance n(k)
at the output as in [1]. Therefore output error
e(k) is described as

e (k) —yr (k) —ym (k)
=Wn(z) L(z) ¢&)" £K) +n (k) (22)
It is assumed that we can express e(k) as
e(k) =Wn(z) L(z) (67 £ +n (k)  (23)
where

m (k) =Wn(z) L(z) n: (k) 24)
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To avoid the integration effect of the external
disturbance, we employ a dead-zone in the feed-
back path of integral action in the parameter
adaptation law (16). So a modified adaptation law
for robustness is proposed as

Algorithm * 85 (k) = —uT £ (k) e(k), p> %

8, k)=6,kk—1D—I ¢k—1 nk—1)
(k) =8 (k) + 8, k)
r=r">0 (25)

where

n(k)=e(k) |e(k)l >Ny(defined later)
=0 otherwise. 26)

By (25), we have
¢ k)=¢ k—1)—T tk—1) nk—1) (27)

where ¢, (k) is defined as in (17).

The equivalent error model for this algorithm is
shown in Fig. 4. The linear time-invariant feed-
forward part of Fig. 4 can be described by state
equations

x (k+1) =Ax(k) +b(¢d)" £ k) +n, (k)
e(k)=c"x(k)+d (k)T £{k)+n:(k)) (28)

where the transfer function is L(z) Wm (z) which
is strictly positive real.
or

L(z) Wn(z)=c"(zI—A) 'b+d (29)

By the Kalman-Yacubovich lemma it is known
that for (29) there exist a real matrix P =T >
0, a vector q, and positive constants €, w such that
for any matrix Q = QT >0

ATP+PA=-—qq"—¢Q
Pb =c—wq
w? =2d (30)

are simultaneously satisfied.
A Lyapunov function candidate for the set of
eq. (27) and (28) is chosen as

V& =x®&)T Px®&) +¢ )T ¢ (),
I'=I">0 (31)

(1621)
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Then AV(k)=V(k+1)-V(k) may be expressed as
after some manipulations

AVE) =~ xK)T qg—w (k)T EK) +n (K))?
—ex (k)T Qx (k) +2e k), (k)+2¢ (k)T
Ek) e@-—-pk) +EMTT ¢k
(n(k)? —2ue (K)*)
=[xk q-w(e®" ¢k +n. (k)]
—ex®TQx K F+2 1 ek | no
+2¢ (k)TEK) (e (k) —n(k))
Wk (k)P —2uek)?)
(32)

where no>In,(k)I. |fle(k)! >N,. We have

AVEK) == x(k)Tq-w(g&K) L) +n: (k))*
—ex (9T QxK)+21ek) I ne— (2u—1)
)T k) elk)? (33)

Therefore if we slect the size of dead-zone N,4as

21,
Cue—D ¢TI &k

Na (k) = (34)

and |e(k) | >Nd(k0). Thus we have

AVEK =—[xk)Tq—w(sk) " ¢k +n(k)))*
—ex (k)T Qx (k) (35)

From the above analysis, we can see that if
le(k)| > Nd(k) the V(k) decreases and therefore
e(k) is bounded within approximately the dead-
zone size Nd (k). If the level of signal is less than
that of external disturbance, the size of dead-zone
increases relatively and e(k) is bounded within
a larger value. On the other hand, if the level of
signal is larger than that of external disturbance,
the size of dead-zone decreases relatively and

1 DEAD
sty| 771 L ZONE

Fig4. An equivalent error model with the

modified algorithm (25).

e(k) is bounded within a smaller value. This
bounding nature ensures the signals of the system
to be bounded in the presence of bounded
external disturbance.

V. Computer Simulations

The following simulations illustrate some
features of the robust adaptive algorithm
considered in section IV where L(z)Wm (z)=11is
taken. Considered is a 2nd-order stable minimum
phase plant described as

ye(k)=1.2yp(k—1) - 0.35yp(k—2)
Fup (k- 1) +0.4up(k—2)+nk)

here n(k) is an unbiased uniformly distributed
random sequence [0,5] with the mean 2.5. The
reference model is given by

Ym (k) =¥m (k 1) 0. 24ym (k’* 2)
+r(k-1)+0.5rk -2)

The initial controller parameter 6 (0) is taken as
0 vector. To compare the effects of the size-
variable dead-zone, a comparison is performed for
the fixed dead-zone controller to the variable
dead-zone one. In Fig. 5 is shown the output
response of plant controlled by the same algorithm
but has a fixed dead-zone whose size is Nd=2 with
M =1, I' =0.01 and r(k) =10.0 square wave. Fig.
6 shows the output response of plant controlled
by the proposed algorithm where a time-varying
dead-zone (refer to (33))is used with u=1,I'=0.01,
n0=2 and r(k)=10.0 square wave.
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V1. Conclusions

This paper presents a robust model reference
adaptive control having a modified parameter
adaptation law with a generalized model reference
adaptive structure. This new parameter adjust-
ment law which employs a time-varying dead-zone
method is shown to be able to maintain the
stability of the adaptive control by assuring the
boundedness of the signals in the presence of
bounded external disturbance. It is also shown by
an illustrative computer simulation that with this
time-varying dead-zone method the output
response of the system would be better than with
the fixed dead-zone method
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