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An Unified Method of Finding the Inverse of a Matrix with Entries

of a Linear Combination of Piecewise Constant Functions
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Abstract

This paper presents an unified method of obtaining the inverse of a matrix whose elements are a
linear combination of piecewise constant functions. We show that the inverse of such a matrix can
be obtained by solving a set of linear algebraic equations.

I. Introduction R
K@ =-R1'1®) BTt} (Te, )N (T 1),

Chen and Shih[1] analyzed the optimal con-

trol problem with quadratic performance index for t&(0,1] M

a class of linear time-varying systems and obtained Here Ay (Tf, t) and Ay, (Tf, t) are n X n matrices
equally-distributed piecewise-constant gains for whose elements are a linear combination of
the optimal controller via Walsh functions[2]-[7]. Walsh functions. One can easily observe that it
According to the result in [1], the time-varying is obvious that the inverse of the matrix Ay, (T, t)
gain K(t) for the controller is given by the follow- should be available desirably in an anaytic form
ing equation: in order to use the feedback gains K(t). Also, it

is pointed out that as the dimension n of the
system and the number m of Walsh functions
employed increase, hand calculation of the inverse

IEER, @EEBRERE ER W B LER of Ay (Tf, t) is very tedious, and becomes almost
(Dept. of Electrical Eng., KAIST) impossible for the case when n and m are large.
B AT 1988% 28 11H However, in [1], no indication was given con-
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An Unified Method of Finding the Inverse of a Matrix with Entries of a Linear Combination of Piecewise Constant Functions 17

cerning how to calculate the inverse of A,y (T, t),
even though they gave an algorithm of finding
A2z (Tpt) or Ay (T, t) via Walsh series approxim-
ation. Several other piecewise constant functions
such as block pulse functions [8]-[19] or delayed
unit step functions[16], [20] can be applied to
the optimal control problem[1] in order to
overcome the difficulties of Walsh functions such
as complex operational matrices or the restriction
in choosing the number m of subintervals.
However, the problem of the inverse of A, (T, D
still exist.

In this paper, we propose an unified method of
obtaining an analytic solution for the inverse of
X2z (Tg, t) whose elements are a linear combin-
atin of such piecewise constant functions. By
using the special property of each functions used,
we will show that the inverse of a matrix each of
whose elements is a linear combination of
piecewise constant functions can be obtained by
solving a set of simultaneous linear algebraic
equations. Therefore the proposed algorithm can
be easily implemented by computer programming
as in the algorithm of finding the state transition
matrix [21]-[22]. Thus the result will be very
useful not only in solving the optimal control
problem of time-varying systems via piecewise
constant approximation but also in other areas
using piecewise constant approximations.

II. Problem Formulation

Let ¢i(t)’ for i=0,1, ... , denote the piecewise
constant functions treated such as Walsh func-
tions, block pulse functions, or delayed unit
step functions. And also let ¢(m)(t) be the m-
vector function defined by

Fimy (0 =18 (0, B,(0), o, 6 (O],

te[0,1] (2)

Here the superscript T represents the transpose.

Let us define the matrix A(t) whose elements
are a linear combination of piecewise constant
functions as follows:

811.1 ¢(m1 (t)a}.z ¢'m| (t) "'aIn¢{mw <t)

a‘;l Pim: (t)a.zr: Pims (t) "'ﬂ.;n¢1mr ([)

Alt) — Jte[0,1)

an1 $imy (1) 882 Pims (t) - Bhn i, (1)

(3)

where for each i,j = 1,2, ..., n, ag isan 1 x m vector
of the form

T _
3 =a [aijO 30 - % m-1 ] )

Our problem is to find an analytic form solution
for the inverse of the matrix A(t).

M. Mathematical Preliminaries

Let there be given the following two arbitrary
functions each of which is a linear combination
of ¢i(t), fori=0,1, ..., m-1;

p(t) = po Po (t) +P1¢1 (t)+ +pm-| P (t)
épT‘ﬁvm‘ (t) (5)

and

q(t) =qodo () +qud (1) + Gmot P (1)

2q" ¢, (1) (6)
where
p'= [p D1 Py (7)
and
pl= [q g q ] (8)
09, - Am

Let <I>(mxm) (t) be the product matrix [1] def-
ined by

= T
P mxm) (= By ¢(m) (9] 9

And also let Q(mxm) be the coefficient matrix [1]

corresponding to the vectorq,q = [q , Ays - v
T . Y

qm-l] defined by

P mxm) ® 9= Qmxm) P(m)y (10)

Note that the product matrix and the coefficient
matrix as mentioned above play an important role
in system analysis and design via algebraic appro-
aches using series approximation. For each
piecewise constant function, the product matrix
and the coefficient matrix are given as follows:

1) Walsh functions [1]
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# (t) ,form=1
O (= | | Pl O Plemam ()] gor m>p
Py Pz 0
a1
and as , form=1
A [Qcﬂxm QY%(%x'ﬂ}
w , form=2
+3(3-3) Q‘Z%xg)
(12)

where the superscript w means the Walsh func-

tions, m is an integer with power of 2, and the

v, (@.m) is the matrix with each element whose
2 V2 %7

2
subscript is increased by 2 in the Ck:vm m)
2 2

2) Block pulse functions [14]

A set of m block pulse functions ¢'i’ (1), i=0,1,
... , m-1, are defined in the time interval {0, tf) as

LT (+1)t,

m m

HOES I
0, otherwise (13)

where m is the number of terms to be used.
The product matrix and the coefficient matrix
for the block pulse functions are defined as

[ #6(t) 0 =+ 0
0 #(t) - 0
¢(bmxm> (t) =
L O 0 ¢rbn4 (t) ; (14)
and a 0 0
Qs () = | & @0
|0 0  qma (15)

where the superscript b represents the block pulse
functions and m is an integer.

3) Delayed unit step functions

A set of m delayed unit step functions¢g(t),i=

B2 F 6

0,1, .., m-1, are defined in the time interval
[0, tf] as

ity
1, HL<i<y,
m

#L(t) = .
0, 1<t (16)

Here again m is the number of terms to be used.
Lemma 1

For the m delayed unit step functions, the
product matrix, ¢?mxm (t), and the coefficient
matrix, Q(m , corresponding to a coefficient

xm) . :
vector qT= [qo, PRI ] in (8), are given
as follows:

e (1) g5 (1)
e (1) g (1)
Qhm (1) = 87 (t) g (6) gR (1)

L ooy (1) g0t (1) ¢::—1 () ga- (1) g1 (1)

17
and _
U Qs Am -2 Am -1
0g+ta q: Qm -2 L
0 0 gtatar Qm -2 G9m 1
Q'(imxm): : :
0 etat e
L0 0 0 0qtatan.
(18)

where the superscript d describes the delayed unit
step functions and m is an integer.

Proof

According to the definition of the product matrix

= T

$a (1) 6o (1) do (1) ¢ {t)  da(t) g ()
$: (1) ¢ (1) ¢ (1) ¢ (1) b (t) B (1)

Bt () B0 (t) Bmoi ()01 (1) Smoy () Bna(t)
' (19

By using the basic property of the delayed unit
step function [16], [20]
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FHONERES

$EWE! ()= 400y i< (20)

where i,j = 1,2, ..., we obtain (17).

Also,
Fast) o) g, ()] a
y o) gt g (t) Q

.¢:1 (1) gny () g, (1) Qm-1

g 85 (1) +q, 87 O+ +qu- ¢ (1)
(Gota) ¢2 () +qe 83 (4 + quoy fmo (U

L (Qo +q+ +Qm4) ¢dmv1 (t)

éQ:imxm» ¢(m.(t) (21)

Therefore we obtain (18). Q.E.D

According to the property in (10), the
multiplication of two functions p(t) and q(t) can
be expressed as a linear combination of ¢i (t),
i=0,1,..., m-1. Now we can show that the division
of a function p(t) by another q(t) can be similarly
expressed as follows.

Lemma 2
Let there be given p(t) = & pT ¢ m) (t) and q(t)
= q ¢ (t) as in (5) and (6). If the inverse of the

coefflclent matrix Q(mxm) corresponding to the
coefficient vector q exists, the division of the
function p(t) by q(t), q(t) # 0, can be expressed

as a linear combination of ¢i (), i=0,1, ..., m-1, as:
t -
g(—)\ = PT Q(}nx_m) ¢(m)(t)’ q(t) #0 (22)
a(t)
Proof
For q(t) #0, let
p(t)
a(t)

where r is a mx1 vector of the form r = [r

]T Multiply q(t) to 7 ¢ (t) and use the
property of (10), D my ® 4= Q@) (V)
to obtain

p(t) =p" dm (1) = r' im (t) q" Gm (1)
=" ¢m (1) gt (g
=" ®mnm (1) q
= ' Qumxm #m (1) (24)

where Q is the coefficient matrix correspon-
ding to the vector q and Q(mxm) (t) is the product
matrix.

Therefore

! Qmxm) = ¥ 25)

Finally, we obtain from the assumption that

T . 1 (26)
« e Q“"““) QE.D

Remark 1: Invertability of the coefficient matrix
1. Walsh functions

No method of checking the invertability of
Q(mxm) is available at the moment.

2. Block pulse functions

Since the coefficient matrix for the block

pulse functions is diagonal one, if 9 =0,1,
m-1, are not zero, then the mverse of Qb
exist. (mxm)

3. Delayed unit step functions

Since the coefficient matrix for the delayed
unit step functions is given as in (18), the
determinant of Q(dmxm) is_ qq (q0 + ql) .
(q0 +tap to.qp ). Therefore if qq (q0 + ql)
(q0 +tqp +.. +qm_1) is not zero then the inverse of

Q‘(im xm) exist.

IV. Main Result

In the following, we present a method of in-
verting A(t).
Theorem 1

For the matrix A(t) in (3), let the inverse, if
it exists, be denoted as

Vi1 Viz*** Vin
V21 V22" Vin

At (t) =

Vni Vnz Vpn 27
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For each ij =1,2, ... , n, let Aci. represent the
coefficient matrix corresponding to the vector
3y of A(t) in (3), then A‘;j can be obtained by
(12), (15), and (18). And define the matrix AS
to be the matrix whose entry in the i-th row and
j-th column is the transpose of the matrix A‘ij;
that is,

(AT (AS)T - (ARDT
(AL)T (AS)" -~ (AR
A= : : :
(Afn)" (Af)T - (AR)T (28)

i can be express-

ed as a linear combination of ¢i(t), fori=0,1,..., m-
1,; that is,

Then, for each ij= 1,2, ..., n,v

Vij i Pmy @ (29)

where the 1xm vector

T _
7 = [wijO’ Wil = Wijm-1 ] (30)
can be obtained by solving the following simult-
aneous algebraic equations:

Wiy 1
0 m terms
0
Wi, 0
AC _ 0 m terms
0
W in 0
0 m terms
0 J
Wog 0
0 m terms
0
W22 1
A° _ 0 m terms
0
Wan 0
0 m terms
L ] 0

(31

67 EFLIBERE

H2E ¥ 6 5
Wai | 0
0 m terms
0
Wn2 0 m terms
A =| 0
0
Wan é m terms
L 0
Proof

Lemma 2 implies that each entry of the matrix
Al (1), if it exists, can be expressed as a linear
combination of ¢i (t), fori=0,1, ..., m-1.

Since A™1(t) A (t) =1, we have

Wi Bim: (1) Wiz $m: (0 Win@m (1)

WL ¢(m (t) W;z By (t) W;n¢(mr (1)
L W:‘n¢(m‘, (t) WI]Z ¢1m (t) W:;n¢rm» (t)

aL Bim) (t) aTz Pimi (t) o a?n¢'m» (t)

az b (1) apbm () @in@m (1)

ani $m, (1) an: Bm () anadm, (1)

> Wb (0 83gm (0 5 Wit () alpm (1)
| D Wit (O algm () 5 whidn (0 ahm ()

=3 Wl (0 ab gm (0

Y whidm (1) ahdm (1)

0 e 0
o1 e 0
0 0 e 1 (32)

For the Ist term in the Ist row of (32), we obtain

3 wh g (0 alidm (1)
=Whédm (1) 2l @m () TWizdm (1) a%idm, (1) +
+Win@m (t) ani dm ()

:er Gim) (t) ¢(Tm) (t) an+W}lz¢<m) (t) ¢1va (t) ayt e
+WTn¢'mr (t) ¢(];111 (t) an
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=W Pimxm (t) 2+ wlz Punxm (1) a5+ -+
+W‘[nq)(mxm) (t) an,

=wi AL by (t) +wiz AS Gmy (£) 4 -+

+WTn Afn ¢(m) (t)
[10-0) ém (t), for walsh or delayed

unit step functions
(11-1) éum (t),for block pulse functions
(33)

In the above, the relations of 1=[1 0 ... 0] ¢(m) t)
for Walsh or delayed unit step functions and
I=[11..1]= ¢(m (t) for block pulse functions
are used. The equation (33) implies

WL A$I+WT2 A(z:1+ +W.|rn A(r:u
[10--0] ¢ (1), for walsh or delayed unit

step functions
[1 1 1] @m (1), for block pulse functions

(34)

Here, for each i = 1,2, ... , n, A;l denotes the
m x m coefficient matrix corresponding to the
vector ay; . )
Taking the transpose for the above equation, we
obtain

c

(AEI)TW||+(A§|)TWH+...+( )T

ni Win
1]
0 .
. for walsh or delayed unit step
6 functions
- L
:l for block pulse functions (35)
1]

Similarly, for the n-1 terms remained in the 1st row
of (32), we have

0
(Afz)-r Wn"i"(A(z:z)T le+"'+(A$\z)T Win™
L 0
01
(Af)" Wit (A%n)T wiat - + (AR)) T win=|
L O |
(36)

(611)

21
Let the m x 1 vectors L, M and N be defined as
LT =p[(11..1]
T
M* = [10..0] 37
NT = (00..0].

Then the expressions in (35) and (36) can be put
in a more compact form as:

(AT (AZ)™ (ARDT ] [ wn ‘M
(AT)T (A5)T- (AL wie | [N
(A?n).r ( gn)T"' (Agn)T Win N (38)

It is noted that for block pulse functions, we
should replace M by L. In a similar manner, for
the 2nd row of (32) we obtain

(AT)T (Agx)T o (AR )T Wz N

(Agz)T (Agz)r (Afm )T Waz M
P : TN

(AL (AT (AR Lwa ] LN,

(39)

and so forth.

As mentioned above, M should be replaced by L
for block pulse functions. Then we can obtain
the following a set of n simultaneous algebraic
equations.

[ wiy | M ]
AC Wiz | N
L Win N
Way N ]
W M
A€ . =N
Wan L N i
Wni | N ]
A Wna | _ N
L Wnn L M
(40)
It is remarked that the vector M should be
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replaced by L for the block pulse functions. By
solving the above simultaneous algebraic equ-
ations, we can obtain an analytic solution of the
inverse of the matrix A(t). Q.E.D

V. Examples

Let us consider the following matrix A(t)
for n,m =2

A(t) _ a1 dim) (t) a12 $m) (t) J
az $um (t) a;z¢<m1 (t)
where
aL:[l 2] aTz:[z l]
an=(03 2)a,=(4 3),

and let the inverse of the matrix A(t) be denoted as

sz bim) (t)
WI: Sim) (t)

WI! Bm) (t)

AT ()=
ng D) (t)

where

wi,= [wyo, wy), for i, 1=1,2.

1) Walsh functions case

Equation (40) yields

1 2 3 4 Wiie 1
2 1 2 3 Win - 0
2 1 4 3 win| |0
1 2 3 4 Wiz 0
and
1 2 3 2 Ware 0
2 1 2 3 wan | _| 0
2 1 4 3 Wazo 1
1 2 3 4 Wz 0

Solving the above simultaneous algebraic equ-
ations, we obtain

F2E B 6

2) Block pulse functions case

Equation (40) yields

Wi
Win

Wize

0
2
0
1

SN O -
[=T = I
w o NN o
[ BN e S )

Wiz

and

W2io
Wan

W20

[ N e
-0 N O
S B O W
w o N o
el = =]

Wazy

Solving the above simultaneous algebraic equ-
ations, we obtain

0w -

1

2

“3)

3) Delayed unit step functions case

WL=[‘2

T
Wn‘[

[N

Equation (40) yields

1 0 3 0 Wi 1
2 3 2 5| |wm|_[0
2 0 4 0 Wize 0
1 3 3 7 Wi 0
and
1 0 3 0 Waio 0
2 3 2 5| |wwm|_|0
2 0 4 0 Wiz 1
1 3 3 7 Wazi 0

"Solving the above simultaneous algebraic equ-

ations, we obtain

V1. Conclusion

In this paper, we have proposed an unified
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method of finding the inverse of a matrix whose
elements are a linear combination of piecewise

constant functions.

We have showed that the in-

verse of such a matrix can be obtained by solving

a set of simultaneous linear algebraic equations.
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