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The time correlation functions of concentration fluctuations due to the random forces near the steady state are evaluated for 

a general two-component nonlinear chemical system by solving the corresponding two dimensional Fokker-Planck equation. 

The approximate method of solving the Fokker-Planck equation is based on the eigenfunction expansion and the correspon

ding eigenvalues for both the linear and nonlinear Fokker-Planck operators are obtained near the steady state. The general 

results are applied to the Lotka model near the oscillatory marginal steady state and the comparison is made between linear 

and nonlinear cases.

Introduction

Various kinds of approximate methods1'7, such as size ex

pansion1, time scaling2'3, mode-mode coupling4, dynamic re

normalization5 and etc.6'7, have been used to discuss the 

dynamic phenomena for a single component nonlinear che

mical system, starting from a Langevin equation, Fokker- 

Planck equation or other equations. It is, however, much 

more complicated to obtaine the dynamic properties for a 

multicomponent system than for a single component system.

The purpose of the present paper is to obtain the time cor

relation function of concentration fluctuations near a steady 

state for general two component nonlinear chemical system, 

assuming that chemical species obey a Langevin equation. 
The method to be used is the response theory7'9, which is one 

of the most effective methods. Then, applying the general re

sults to a specific reaction model with instability, that is, the 

Lotka model10, we discuss the time correlation functions be

tween the fluctuating parts of concentration near the oscil

latory marginal stable steady state.

At first, we restrict ourselves to the linear Langevin equa

tion. In order to discuss the time correlation function near a 

steady state(or equilibrium) we have to obtain the eigenvalue 

and probability distribution of the linear Fokker-Planck 

equation. The easiest method in our opinion is the operator 

method as in quantum mechanics.7*8,11 We diagonalize the 

linear Langevin equation with the aid of a suitable eigenvec
tor3 and obtain the corresponding linear Fokker-Planck equa

tion. We introduce a function so that the Fokker-Planck 

equation is transformed into a time-dependent Schrodinger 
equation/ Using the creation and annihilation operators^8,11, 

it can be shown that the probability distribution can be exp

ressed in terms of the coupled Hermite polynomials. With 

the aid of the eigenfunction we may obtain the solvable re

currence formulae for the eigenvalues of the Fokker-Planck 

equation in any order of coupling. Then, we extend the linear 

theory to the nonlinear case to obtain the eigenvalue of the 

nonlinear Fokker-Planck equation. In the nonlinear case it is 

only possible to obtain the eigenvalue up to the first order of 

the coupling. Nevertheless, we may discuss the nonlinear ef

fect on the time correlation functions near a steady state.

Finally, the general results for the correlation functions 

are applied to the Lotka model to obtain the correlation fun

ctions between the fluctuating parts due to the random for

ces at the oscillatory marginal steady state.
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Theory

Let us consider a general nonlinear system of two vari

ables, >4 and v2. which satisfies the following Langevin equa

tion

% 0，%)「=체 (饥, y2 V+yl (A, & )「+饥们(£, g2)r

+ 2/2 侦如 g」'+ (&, &)', (2. 1)

where the matrix M is given as

M = 勺 (2.2)

and the random forces, §'s, are assumed to satisfy the Gaus

sian conditions14

〈&(*)〉= 0, 〈&⑴ & (V)〉= 2 ). (2. 3)

The / zs and 幻's are assumed constants, Dv is the diffusion 

coefficient,為 is the Kronecker delta, and^(/-/') is the Dirac 

delta function. The Fokker-Planck equation for the probabili

ty distribution, P(yx, v2, /), corresponding to eq.(2.1) is

으P0, 饥, t) = mF(s, 饥") ；

ot

mp(g】，饥，力)=占〔一■£(，巳卩)+玖丿' p〕, 
b dyt dytdyj

3, j = l or 2), (2. 4)

where Sj is the z-th component of the drift vector term in eq. 

(2.1). At a steady state or equilibrium we have

A
芸R 3、％) yj =0, (2. 5)

where P(i is the probability distribution at a steady srate or 

equilibrium. The Fokker-Planck equation under the influ

ence of an external perturbation may be described as/-9

으F(y】，g” z) =〔m+m 3)〕F0, g"), (2. 6)

where S?(Z) is the perturbation term given as

彳(t) = BF⑴. (2.7)

Here, B is an operator with respect to yx and j2 and F\t) is a 

given function of time.

The system is assumed to be in a steady state or equilib

rium at / = 8 . To ensure the initial condition we switch on 

the perturbation at - adiabatically so that m' at t -is 

zero. If the perturbation is small, we may obtain up to the 

first order approximation as follows

F 3“ S，t) =R (饥，饥)+ / dZ'exp〔m(—£')〕

乂 収，t). (2.8)

Using the first order approximation, the average value of an 

observable represented by a quantity A at time t is

〈％"〉=〈，4〉° + /：G"t-t')F(t')dt', (2.9) 

where is 나le retarded Green function or response

function defined as

Gab (t - t') = 0 (t - t')〈 A (们，gj exp〔3(—")〕

乂 B (们，饥)〉。， (2.10) 

the Heaviside unit step function e(x) being given as

r 1 for x > 0
。(幻=

〔0 for x < 0,
(2. 11)

and〈…〉is the equilibrium ensemble average over the dis

tribution. Using 나le stationary assumption, the time correla

tion function between A and B, CA^t)f is related to the retar

ded Green function as follows:

G"t) = 6(、t) (2. 12)

From the retarded Green function we may obtain the other 

dynamic properties. In order to obtain the explicit form of 

the time coit이ation function, we shall use the method to dia

gonalize eq.(2.1) and introduce the creation and annihilation 

operators. At first, we 아lall restrict ourselves to the linear 

case and then extend the linear result to the nonlinear case.

(A) Linear case

Let us consider the linear case of eq.(2.1) in this section. 

The linear stability of the system depends on the eigenvalue 

of the matrix, M:

(a) If all the real parts of the eigenvalues are negative, the 

system is stable.

(b) When at least one of the real parts of the eigenvalues is 

positive, the system is unstable.

(c) If a real part of an eigenvalue is zero, the system is at a 

state of marginal stability. When det M = 0, the state of mar- 

gina! stability is called as the state of nonoscillatory marginal 

stability, while tr M = 0 and det M〉。is the condition for the 

state of oscillatory marginal stability. We shall consider the 

system at a stable state or the state of oscillatory marginal 

stability.

Let the eigenvalue of M and its corresponding right and 

left eigenvectors be F,矿 and 项，,respectively. Then, the ei

genvalues and eigenvectors are given as3

人I =。十8,蒔=a - (Re 九己 0 ),

赤(1, "+时,車'=(1,盘

(«= 1 or 2 ) (2. 13)

where

a = (a2 - det M) 2. (2. 14)

It can be easily checked that the eigenvectors satisfy the or

thonormalization conditions

玄贬财=纨，必済*=膈. (2.15)

With the aid of eq.(2.13), the linear part of eq.(2.1) reduces to

芥们=一人s + f；, 3=1 or 2 ), (2.16)

where

_ b b

旳—X2 = !,1-X+d3/2'
* = &-沽3&，& = 兀^& (2.17)

The Fokker-Planck equation corresponding to eq.(2.16) be

comes
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^-P(xl,x2tt)=Sf)P(xl,x2t) = ~XP(xl,x2ft)； 

ot

- ,d I , 3 I ? 32 I ? 92 I n / a?

(2.18) 

where

妇=怎⑴4。)〉= %+(仁云3m

d“ = d“=〈《⑴〉=A+ (入]+ * (入2 + d)°m 

d23=〈& (t) 談 ⑴〉= Du+ ( 入으7)'咨 (2. 19)

Let us introduce a new function defined as7'8

P(z1, z2t t) =exp〔+ (z： + z；)〕P(2i，z” Z), (2. 20)

where

zt =(£勺坛 (2. 21)

Then, eq.(2.18) becomes

으 P (z-i, z2r t) = So-f* % t) = — AP (z” z” t) ； 

러

Ho = e冲〔十(z： + z；)〕日 exp( } (z： + z；)〕，(2. 22)

Introducing the creation and annihilation operators with res-

pect to Z] and z2 as
7-8,11

八 a丄
a= ----r -

OZ\

丄2、a+=

2 1，

d丄1
--- r —

dz ] Z

. a
b= ---\~

oz2

丄 2 b+= 

2 2,

a丄1 (2. 23)

we have

Bo =-人]3 十 0
一사尊 +2〔儒EW

(2. 24)

The operators satisfy the following commutation relations:

〔& y i,〔B,片+〕= i,〔" &〕=〔时〔6 片〕

=〔&,£十〕= 0 . (2. 25)

Let 나!은 eigenfunctions of a + d and 方 * 5 be PM1(2i)and 

Pn2(22), respectively. Then, we have

__ 1 _
a Pnj (釦) = 시戸川 — 1 (们),

a+Pni (zj = Si + l)2%+i(2"),

.— 丄— (2.26)
b (z2) =n2zPrte_i (2)

(代+1)*戸51(勺)，

where m/s are zero or positive integers and the eigenfunc
tions may be expressed in terms of the Hermite polynomials8

_  ] 1 z
=〔n ! (2招 i/2〕i万哄)(-不犷)％(戸苴)；

Hr (z) = (- 1) nexp(3，) exp (- (2. 27)

The solution of eq.(2.22) may be written as

•P(Z”2：2，Z)= £ ^Th.na
nn Ha = 0

Xexp ( - Anj(nat)Pni (釦)Pn, (zj. (2. 28)

The above solution shows that the eigenfunctions are coupl

ed each other through CM1 „2 and A let 2V be % + n2. Then, 

eq.(2.28) can be rewritten as

戸(釘，％t)= f Z C^exp (- AN-n,ni) Pn(z2),
n=0 n= 0

(2. 29)

where

CelM(NAW)). (2.30)

Now, let us obtain the eigenvalue of So. Substitution of 

eqs.(2.24) and (2.29) into eq.(2.22) leads to

f f〔0(»-/ + 椅一人5시(驾孔5(如孔(勺) 

,v=。n=o
-2(蝕스)土>이 0+1顼 (n+1)!1

-Pn+ 1 (?2)〕= 0 •

(2.31)

Assuming that N is the maximum order, we may split eq. 

(2.31) into two parts, that is,

〔人I (시一 n) + A2n— 人N—n"C；： = 0, if N is 0 or 1,

1 (2.32)
(Ai (N~ n) + A2n— 入村一现 C： —2( -亏씅左)1

X〔(N-서~1) S+l)〕'C：i =0， (2,33)

when N>2.

From eq.(2.32) we can see that N = G describes the steady 

state or equilibrium of the system. As will be shown in the 

next section we do not have to consider the case of N〉2 to ob
tain the time correlation functions explicitly near a steady 

state. From eq.(2.32) we obtain the following eigenvalues 

for 7V = 1

入 1,0=人】，人o,i =人2. (2. 34)

We shall extend the linear theory to the nonlinear case in the 

next section.

(B) Nonlinear case

The Fokker-Planck equation given in eq.(2.4) may be 

given as, using e다.(2.17),

-^-P (xn x2, t) = EP (xj, x2, i) (2. 35)

at

m= So +

where 习 is the linear operator already discussed and En is 

the nonlinear operator given as follows

En= - 心：&+/*；)
C7X J
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-£（gs:+g；："&+g；x；） 

C泣2

K =〔£^〕' M+스普 L + （스） 73〕 

入】一人2 0 ©

r/ （人i + d）（人2 + d）1 人 1 +人z + 2df
fi = （""一"+ 5——九

I 2 （人 1+d）（人2 + d） y ]

（2. 36）

b2

£' =（1슨3' 成+쏘4 + （스晋） 侦〕

and we may obtain "s by replacing万 by 昏 Using 比e same 

method as in the linear case, we have

은F（j z2, t） =EP（Zi, z2r t） = （& + §v）P（z” 2"）.

dt , 、
（2. 37）

where 瓦 corresponds to the result given in eq,（2.24） and SN 

is

W=-（纨+gj）（牛）、++&）-（〃+2g《）（中）"++&）

Ai 人2

+（知）印+补（幸）切a++冷）气'E

入1 011 att

+（即牛）、++a）（片++6）｛（点）切。++（户）以沁

入1 人2 all alt

+ （§끄） （殻+片）” （亲也"++（北）电疗｝. （2.38）

Assuming that the eigenfunction of eq.（2.37） is the same as 

that for the linear case, the eigenvalues for N<1 are

Ao,o=0, 入" = 摘+ （牛）以+將끄/;）, Ml = 入2,

A， 逐” （2.39）

The time correlation function Cy罪） ne저r the steady state 

may be evaluated from the following expression:

Cyiyj （t）=〈们 exp（&）们〉。

/ 如血饥exp（Et）gjPz （饥，y2）
- Jt으--------------------------- - （2. 40）

d시両%Pg （们, 饥）

The results become

C%。）=（人;入尸〔（人 i+d）?（牛）exp （-入i,«）

+ （确+疔（登围说-扁」）〕，

C*"=Cs（t）= ""贮서;）〔（"+d） 成?

exp （ - A110t） + （入z+d）（牛）exp （-扇,」）〕,

人2 /
（2.4

+ 夺exp （- 入0, J）〕

We can apply the results to any two-component chemical 

system. In the next section we will discuss the Lotka model 

which is a chemical reaction model with instability.

Application to the Lotka Mod이

The Lotka model is a model of chemical reaction mech
anism showing the sustained oscillation, which is given by15

A +K -丄 2Xi,

X, + X, -소 2X,, （3.1）

X, -보 P

where 庇，s are the rate constants, the concentration of the 

reactant A is kept to be constant and X】and X2 are the inter

mediates. The rate equations for the intermediates are

= kxAXx -知X]Xz+
at

（3. 2） 

房％ = —2G+幻 XlXz+我

with the nontrivial steady state value

X：=브, X； = 쏘. （3.3）

Expansion of eq.（3.2） in terms of y^t） = X0 -Xf leads to

芬 3l,02）「=LZ Z ] （h 饥）'+顷 m（t, 1）'

+ （£1, &）'. （3. 4）

The time correlation function for the Lotka model near 

the steady state can be obtained explicitly from eq.（2.40） to 

give

Cyiyi （i） = [exp （ - AllOt） - exp （-人。,J）〕,

Cy y （t） = •知〔exp （- A1（0i） +exp （- A01lf）L （3. 5）

⑴=c%七⑵， 

where

小=04"3,如=쓰1으苜츠孔 （3.6）

Zl/E]

At first, let us consider the linear case. The steady state of 

the Lotka model is marginally oscillatory. The eigenvalues 

for the linear case obtained in eq.（2.34） can be evaluated us

ing eq.（3.4） and the corresponding time correlation functions 

are obtained as follows:

（t） = 3皿 sin hW）, 

Z a）o

（t） =Cy2yj（Z）= 3丄 COS （wo t）. （3.7）

Cg。）= 그？1E （t）,

It is natural that the time correlation function등 undergo sus

tained oscillation at the marginally stable steady state. As
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shown in the mechanism of the Lotka model, the intermedi- 

at은 Xi is related to X2 through the feedback step. Even 

though the feedback step has indirect influence on the cor

relation functions through the value of the steady state, it 

controls 나le ratio of Cy^t) over Cy^t) to be -Akjk^ at any 

time.

Including the nonlinear terms, we obtain the following ei

genvalues :

All0 =- 8 晴）+'益。一 〕,

(3.8)

The effect of the nonlinear terms is to make one of the modes 

increase or decrease in an oscillatory fashion depending on 

the value of dn. If d】］〉。, 나le mode with 0 increases oscil- 

latorily. It diverges as time goes to infinity. This means that 

we have to consider the higher order approximation to dis

cuss the nonlinear effect. In the present paper, however, we 

have restricted ourselves to the first order approximation. 

Thus, we consider only 나】e case of <yn<0. When dn<Q, the 

mode with Auo decreases oscillatorily and the time corre

lation functions after long time become

Cy, (t) = *이」exp〔£〈st-응、)), 
1 1 4(oq z

C七丁2 ⑴=以卩 exp〔Z (coQt - (3. 9)

The same argument for the linear system may be applied to 

the nonlinear case. We shall extend the present theory to 

describe the dynamic phenomena of negative(and positive) 

metab시ic control circuits1213 in the forthcoming papers.

Acknowledgement. This work was supported by a grant 
from the Basic Science Research Institute Program, Mini

stry of Education of Korea, 1986. '

References

1- N・ G. van Kampen, Can. J. Phys. 19, 551 (1961).

2- M. Suzuki, J. Stat. Phys. 16, 11 (1977).
3- & 0. Han, D. J. Lee, J. M. Lee, K. J. Shin, and S. B. Ko, 

Bull. Kor. Chem. Soc. 7, 224 (1986).

4. D. J. Lee, Unpublished.

5. J. R. Tucker and B. I. Halperin, Phys. Rev. 3, 3768 
(1971).

6 D. J. Lee, M. H. Ryu, and J. M. Lee, Bull. Kor. Chem. 

Soc. 6, 295 (1985).

7. H. S. Kim and D. J. Lee, Thesis CoZ/^c/ww(Chonbuk Na

tional Univ.) 26, 494 (1984).

& H. Risken, The Fokker-Planck 匀如仞刀(Springer-Ver- 

iag, 1984).

9- R- Kubo, J. Phys. Soc. Japan 골2, 570 (1957).
10- K-丄 Shin, in Research Report for Nonlinear Phenomena 

and 丁腥讶 7膈脩沁(Submitted to the Daewoo Founda
tion, 1982).

IL E. Merzbacher, Quantum A/<?c/zi7w/cs(John-Wilev, 1970).

12. N. MacDonald, J. Theor. Biology 65, 727 (1977).

13. D. Allwright, J. Math. Biology 4, 363 (1977).
14- Seleded Papers on Noise and Stochastic Processes, ed. N. 

Wax(Dover, 1954). '''

15, P. Glansdorff and I. Prigogine, Thermodynamic Theory 

°f Structure, Stability and 煎"也冰汕zs(Wiky血ersci- 

ence, 1971).

The pH Dependence of Metal Tetrakis (4-sulfonato-phenyl) porphine 
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The pH dependence studies of Raman spectra are reported for water-soluble free-base, Zn, Co and Cu tetrakis (4-sulfonat()- 

phenylj porphine in pH 4, pH 7 and pH 13.9 aqueous s이니ion. For free base porphine, the substantial differences are found in 

absorption 피】d R거man spectra between pH 4 and pH 7 or pH 10 aqueous solutions due to the protonation at low pH. For Zn 

and Co porphyrins. 나hydrolysis equilibrium constants are obtained by spectrophotometric titration experiments. The 

consisterU 나Hfis in Raman frequencies are found at high pH due to the hydrolysis. For Cu porphyrins, instead of hydrolysis 

the aggregation effect is detected at high pH through the absorption and Ramsn studies. '

Introduction interests in the photochemistry in view of its important roles
in photosynthesis1'2 and its potential utility as sensitizer in 

For many years, the porphyrin has been one of the central photochemical system for solar-energy conversion.3 Water


