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Figure 5. Optical texture of the chiral CuPc 2a at 100°C (X300).

1b) suggest that the chiral PcH, 1a could be a true disc-like
cholesteric liquid crystal.

In the case of the chiral CuP¢ 2a, however, an anisotropic
phase began to appear at 187°C, showing the texture similar
to small “fan-shape’’ texture in mesophase ranges (Figure 5).
It should be pointed out that this was the only case in which
the optical textures of CuPc’s were different from those of
the corresponding PcH,’s reported in literatures so far.’
This result could be regarded as a another evidence that the
chiral PcH, 1a is a columnar liquid crystal exhibiting choles-
teric phase. It has been known by X-ray studies that the
mean stacking distances of known discogenic Pc derivatives
were about 4.6 + 0.2 and 3.4 A (characteristic van der Waals
distance for aromatic compounds) for PcH; and CuPc, res-
pectively.*'*!! From these values it can be assumed that the
chiral CuPc 2a is difficult to form a “helical structure”, but
the columnar structure may be “tilted” due to interatomic
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repulsions of the side chains.
Conclusion

From the resuits of the differences in the transition beha-
viors and the optical textures generated by chiral effect, i.e.,
a cholesteric-like texture (from platelet to fan-shape) of the
chiral PcH, 1a, and the difference in optical textures of the
chiral PcH, 1a and CuPc 2a, the PcH; 1a can be regarded as
the first true columnar cholesteric phase displayed by the
discotic liquid crystal systems.
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Dipole Moments of the OH, OH’ and OH™ Valence States
by ab initio Effective Valence Shell Hamiltonian Method
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The ab initio effective valence shell Hamiltonian method, based on quasidegenerate many-body perturbation theory, is
generalized to calculate molecular properties as well as the valence state energies which have previously been determined for
atoms and small molecules. The procedure requires the evaluation of effective operator for each molecular property. Effec-
tive operators are perturbatively expanded in powers of correlation and contain contributions from excitations outside of the
multireference valence space. To demonstrate the vatidity of this method, calculations for dipole moments of several low ly-
ing valence states of OH, OH* and OH- to first order in the correlations have been performed and compared with configura-

tion interaction calculations.

Introduction

The quasidegenerate many-body perturbation theory
(QDMBPT) is a generalization to multiple reference quaside-

generate states of simple many-body perturbation theory
(MBPT), a diagramatic representation of ordinary Rayleigh-
Schridinger perturbation theory for a reference nondege-
nerate single determinantal unperturbed wavefunction.™®
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Whereas single reference state MBPT has been widely used
to evaluate molecular properties, the QDMBPT formalism
has rarely been applied to treat correlation effects on mole-
cular properties for states that are represented in terms of
many zeroth order reference configurations.*®

Brandow and others have presented formal diagramatic
derivations of effective operators for properties, but no cal-
culations have been presented except for simple atomic sys-
tems where the eigenfunctions are determined purely by
symmetry, and, therefore, the approach in this atomic case
reduces to one similar to that applied in MBPT.*® Very re-
cently the effective valence shell Hamiltonian method (%)
has been generalized to calculate molecular properties as
well as the valence state energies.!®"! This H* method is a
multireference state perturbation formalism for treating elec-
tron correlations, and is based on QDMBPT. The H" ap-
proach has been applied to a number of atomic and molecular
systems where the computations of valence state energies
show that the method provides an accurate description of the
electronic structure. As for molecular properties, dipole mo-
ments and transition moments of the CH molecule are the on-
ly system studied using the H* so far.}?6

In the A" method, effective operators are required as an
intermediate step and the expectation values are the diagonal
matrix elements of the effective operators. The effective ope-
rators act only in the space by a set of valence orbitals, and
the effective operators are defined in terms of perturbation
sums over a complete set of complimentary core and excited
orbitals. The computation of correlated diagonal or off-dia-
gonal matrix elements of the operator (A) proceeds first by
determining the eigenfunctions of H* and then by forming
the matrix elements of effective operative operator {4’} bet-
ween these eigenfunctions. The diagonal and off-diagonal
matrix elements of a given A® can be obtained simultaneous-
ly for all valence states of a molecule and its ions.

Semiempirical electronic structure methods often con-
sider molecular properties. The semiempirical mode! Hamil-
tonians are introduced based on chemical intuition and are
parameterized to make computed energies and properties be
in reasonable agreement with the experimental data. Cer-
tainly in semiempirical approach, the effective operators are
considered like in the effective valence shell Hamiltonian H*
method. The difference is that the matrix elements of the ef-
fective operators are obtained from experimental data in
semiempirical theory, but they are computed from first prin-
ciples in H" theory. So we see that the H* has a dual purpose.
One is that the practical computations of ab initio H* can pro-
vide fundamental understandings for semiempirical methods
and the other is & can be a new good ab initio method.

In the present paper, considerable interests are given to
an ab initio aspect of H', i.e., H” as a QDMBPT. As mention-
ed before, since the applications of QDMBPT to molecular
properties have rarely been performed, it is of importance to
compute the matrix elements of H*, i.e., expectation values
of A" for various molecular systems. These applications wili
help one to assess the accuracy of QDMBPT.

For testing system, dipole moments of the OH molecule
are chosen because OH is small enough to carry out com-
putations without much efforts and the dipole moment is
often sensitive enough to determine the accuracy of ab initin
method. The outline of perturbative definition of the &' for
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properties is presented in section IT and the computational
details are described in section III. Section IV discusses the
computational results.

Theory

Perturbation theory decomposes the molecular electronic

Hamiltonian H into a zeroth order part H, and a perturbation
V.

H=H,+V 1

When H, is constructed as a sum of one-electron Fock Ope-
rators, then the perturbation V contains what we call the cor-
relation corrections. The full many-electron Hilbert space
can be divided into a primary space with projector P and its
orthogonal compliment with projector @, = 1-£, The P,
space is supposedly taken to contain a set of many-electron
basis functionas which are quasidegenerate with respect to
the zeroth order Hamiltonian H, Our choice below for P,
takes it to span the valence space of all distinct configuration
state functions involving a filled core and the remaining elec-
trons distributed among the valence orbitals. Hence, the Q,
space contains all basis functions with at least ane core hole
and/or one occupied excited orbital.

Quasidegenerate perturbation theory transforms the full
Schrédinger equation

Hg, = Ey, 2)
into the P, space effective valence shell Schrédinger equation
HY ¢ = Eg¢? (3

for the projection ¢ = P, ¥, where the F are the exact eigen-
values of (2). Several different perturbation expansions exist
for H, but we choose to consider orly Hermitian forms.
Then, quasidegenerate perturbation theory gives the unique
lowest order approximation’

HY=P,HP,+ (1/2} H‘Z'“_i;f':'o(_/‘l}'[a".f,'c,
(Ed_—Ho]-‘QoVPo (A(," _?"'}l- C-E {4,’

where A.c. designates the Hermitian conjugate of the prece-
ding term and P, (A ) designates the projector onto the valence
space basis function{A),

Now consider an operator A whose diagonal and off-dia-
gonal matrix elements between the normalized full space ¢,
we desive. The matrix elements {¢,| A |¢,) may be transfor-
med with quasidegenerate perturbation theory into the ma-
trix elements of an effective valence shell operator A" be-
tween the orthonormal valence space eigenfunctions ¢!,

(@l Algs) = (gl A% 9. (5)
Again, the specification that A* be Hermitian and indepen-

dent of the state ¢ leads to the lowest nontrivial order pertur-
bative expansion*>1011

A*=F,AP, +  |P,(A}VQ,

(-E.»\_Ho) _1Q0AP0 {A,)+h- c, ! {6}

Thus, we may obtain the expectation values and transition
moments by first solving (3) and then by taking the corres-
ponding matrix elements on the right hand side of (5). Once
this A" is obtained, it provides all diagonal and off-diagonal
matrix elements, regardless of a number of valence electrons,
in the P, space.
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Either direct algebraic methods or many-body theory te-
chniques can be used to reduce () to expressions for the ma-
trix elements of A”in the valence orbital basis. The resulting
equations are summarized in the Appendix of Ref. 11 in
terms of the core, one, two, ... body valence shell operators
A}, A}, A% ..., respectively, in the operator representation

A= AL+ ZATF (1/2) Z AL+ Y

where A” is the constant contribution from the core, 47 is a
one-electron operator with matrix elements (v{A{]v’) in
the valence orbital basis {v}, etc. The original full space ope-
rator A may have one and two-electron contributions, but
here we consider only the dipole operator, so the A is one-
electron operator.

When the operator A is a dipole operator, A" is an effec-
tive dipole operator within the P, space, i.e., the valence
space. Though the dipole operator is a one-electron operator,
the two-electron term, i.e., A} appears in the nontrivial
lowest order A* perturbation expansion. This two-electron
term may look unrealistic, but this nonclassical term is
necessary to obtain sensible ab initio H* computational re-
sults,

The whole perturbation procedure is completely specified
once the orbital basis and H, are chosen. Diagonalization of
the perturbative A in the P, valence space yields the valence
state energies and eigenfunctions ¢f. The latter may then be
employed along with (5) to calculate the expectation values
and transition moments of some operator A by use of the ef-
fective valence shell operator A°.

Calculations

The dipote operator in atomic units is defined as
u= § ReZo+r (8)

where Z. is the charge on the nucleus a at the position R,
and 7 is the position operator for all electrons, =% 7, Wi-
thin the Born-Oppenheimer approximation the nuclear con-
tribution & ReZ. is a constant for a given molecular geo-
metry, and it is only necessary to evaluate the diagonal
and off-diagonal matrix elements of the electronic position
operator 7. For correspondence with the equations in section
II, we merely replace A—r, with the matrix elements Ay =
( ;71| #;) written in terms of spinorbitals ¢; and ¢; for elec-
tron 1.

The definition of H, specifies the computation of H* and
all effective property operators A°. The eigenfunctions ¢ of
the second order H" are used to evaluate the diagonal and off-
diagonal matrix elements of the effective electronic position
operator 7. As mentioned before, though 7 is one-electron
operator, in the effective form of 7, two-electron terms ()
must exist and have been computed.

Dipole moments of the OH molecule are chosen for the
test application because there have been extensive computa-
tions of OH properties using configuration interaction (CI)
type wavefunctions.”*® In the present calculations, the P,
space is the valence space of OH which consists of 20,30, 1x
and 4¢ molecular orbitals. The 1o orbital is taken as the core,
and the all remaining orbitals lie in the excited space. The
zeroth order Hamiltonian H, is constructed as a diagonal in
molecular orbital basis. The diagonal elements of H, are call-
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Table 1. The Vertlcal Excitation Energies {(eV} of OH and
OH~*. Ionization Potential {I.P.) and Electron Affinity {(E.A.) of
OH are also presented. The Intemmuclear Distance is 1.85au.

State H? Cl EXPTL
SCF BARE
OH X:32» T e e
A2Z+ 439 431 4179 407 4.3¢°  4.05%
B2Z+ 1208 12.76 11.08¢  8.65"
C2Z+ 1949 19.66 11.09%
OH+ X3% — e
ala 2.53 226
Adr 432 402 3.669 3.60/
b1lX+ 412 383 3.72¢ 3.53
11n 6.66 6.29
LP. 1166 1219 12.36¢ 13.36
E.A. 219 169 180/ 1.76¢ 1.83%

@Te from Ref. 17. *Ref. 23. ¢CI(Ref. 27} at R = 1.85au with the same
basis set used in the present work. ¢Ref. 28, *Ref. 29. /Md#tler Ples-
set perturbation from Ref, 30. #MBPT from Ref. 31. ¥Nonadiabatic
valyes from Ref. 32 and 33. "Te from Ref. 34. /cited from Ref. 18.
*Ref, 35, 36, and 37.

ed orbital energies. The choice of orbital energies is quite
flexible. That is, we can choose any type of orbital energies
as far as the choice does not make the H" expansion diverge.
In the present calculations, two types of orbital energies are
chosen. One is the orbital energies from the OH X?r self-con-
sistent field wavefunctions. For this case, H, is an ordinary
Hartree-Fock operator. The other is orbital energies coming
from the OH?* SCF calculations. The former will be called
SCF orbital energies and the latter the bare core orbital ener-
gies. The orbital energies for the valence orbitals are avera-
ged. This averaging removes energy denominator problems
and guarantees the quasidegeneracy of the valence space.?

The basis set is taken as Dunning ‘s contracted Gaussians
{4s3p) plus two d polarization functions on oxygen and con-
tracted Gaussians (2s) plus one p polarization function on hy-
drogen?. This basis set is chosen because extensive CI cal-
culations with this basis set have been reported.?®*” The in-
ternuclear distance is fixed at 1.85au, which is very close to
the equilibrium bond length of the OH X%« state.

Molecular orbitals are taken from the OH X’r ground
state SCF calculations. The matrix elements of core (72,
one-electron () and two-electron (r3) are all computed.
The effective wavefunctions ¢! are determined from the se-
cond order HY calculations. Finally dipole moments, i.e.,
{¢%|7"|#?) are computed with the matrix elements of #” for
the several low-lying valence states of OH, OH* and OH " si-
multaneously.

Results and Discussion

To evaluate dipole moments we have first to obtain effec-
tive wavefunctions and, in the process of determining effec-
tive wavefunctions, energies of the valence states are also ob-
tained. Table 1 displays the excitation energies of the several
valence states for OH and OH*. Table 1 shows that our H"
excitation energies are in good agreement with other ab initio
and experimental values. The two types of A calculations.
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Table 2. Calculated Matrix Elements of Effective Dipole Ope-
rator for OH in au.

Matrix Element H¥ Hartree-Fock
SCF BARE
rd -0.000375  -0.000370 -0.000306
{2¢ 17!l 20) -0.188648  -0.264865 -0.327365
(3a|r?130) 0.031212  -0.118395 -0.159425
SEAELIN PN 0.018869  -0.040685 -0.055278
CEAEHE Y -2.817310  -1.390968 -1.280121
(2017 30 0.133277 0.489726 0.773137
(2o (7'l 4o} -0.444512  0,219238 -0.650798
Bolrildo) -0.977700  -0.689990  -0.444154
2o bril 1) -0.248767  -0.366822  -0.650798
Balryl 1nz) -0.087138  -0.050382  -0.139895
(o |r?| 1z, -0.129845  -0.030326 0.082452
(202017} 12020)  -0.050091 -0.027758
(303e 177, 13030)  _0.037525  -0.010131
(4040ir);|40d40) 0610530  0.228554
OMrelng el | Lned n,) ~0.043925  -0.015654
(3¢20|+% | 3020) -0.012849  0.011757
{40205 | 4020) 0.291086  0.023463
(403075 ) 4030) 0.304252  0.046068
{(In20|7% | 1n,20) -0.024183  -0.001693
{(IrBelrf| 1n30) -0.070997  -0.026789
{lmdorh ! 1ndo) 0225888  0.014258
(gl agle8 | 1ayla,) -0.038368  -0.013643
(3a201r5[2¢3a¢)  -0.053417  0.028132
{4020 |1}, | 2040}  -0.042572  -0.011807
{40301} 13040) 0.041108  -0.010739
(m2a ]| 201m,) -0.000426  0.004352
(In3alrh| 3012, -0.008862  -0.007420
(lmdolriy| 401ln)  0.015295 0.000102
zdaelrdy | 1nel,) -0.002779  -0.001006

Table 3. Dipole Moments(au) of OH, OH* and OH - at the In-
ternuclear Distance of 1.85au.

H¢ .
State SCF  BARE Cl EXPTL
OH X2x 06440 0.6763 0.644220.6493% 0.6589¢ 0.6768"
0.66214 0.6617¢

AZE+ 0.6855 0.7334 0.6804¢
B2XZ+ 03115 -0.3170
C2Z+ 03756 0.5363
OH+ X3Z- 1.0250 0.9626 0.9015%
aldA 10343 0.9663
Adr 09723 0.9245
b1Z+ 1.0144 0.9482
11z 1.0033 0.9909

OH- XX+ 03542 0.3711 0.4147°

9Ref. 17. *Coupled electron pair approximation(CEPA) from Ref.
38. OH (R = 1.837aun), OH* {R =1.946au) and OH- (R = 1.825aw).
¢Optimized valence configuration calculations from Ref. 19. (R =
1.8342au). ?CEPA from Ref. 39 (R = 1.83au). ¢CI from Ref. 26 at

R = 1.85au with the same basis set used in the present paper. /Ref.

40.
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SCF and BARE values are close to each other and it verifies
that the second order H' is accurate enough. For the B? ="
and C*Z* states, our H® excitation energies appear to be
wrong when they are compared with experimental values.
Our values are vertical excitation energies, but experimental
ones are nonadiabatic values. The potential minimum of B
and C? Z* states are far from the 1.85au which is about the
equilibrium bond length of the X*x state.

The nuclear contribution to the dipole moment is 1.85au,
because the internuclear distance of the OH molecule is fixed
at 1.85au. The positive sign of the dipole moment is defined
as the polarity of O H®*. The origin of the coordinate is cho-
sen at the oxygen atom.

Table 2 shows the matrix elements of the one- and two-
electron parts of #’ in the valence orbital basis. The core part
r.={10 || 1o} is very small, but the A value is different
from the Hartree-Fock value, The Hartree-Fock values are
expectation values of » operator between SCF molecular or-
bitals. The difference represents a contribution from core
correlation to the dipole moment. Thus, core-core and core-
valence correlations contribute to the dipole moment and
must be considered. Table 2 also shows that one-electron
matrix elements are larger than the two-electron ones. The
two-electron matrix elements which do not exist in the origi-
nal dipole operator are small, but can not be neglected.

The total dipole moment, #" is a sum of the nuclear part
(1.85au) and the electronic part(#"). The electronic part is an
expectation value of #* of the valence state. As noted before,
a unique feature of the H* method is the fact that all valence
state energies and properties are obtained simultaneously for
the neutral molecule and its ions from a single computation
of H” and A", Table 3 shows the H* total dipole moments for
several valence states of OH, OH* and OH". Other ab initio
values are also listed for a comparison.

Table 3 displays two types of A calculations. The H" di-
pole moments of these two types differ by less than 10% in
magnitude. This discrepancy has been expected and, in a
practical sense, it justifies that the lowest order A” expansion
is a reasonable approximation to an exact infinite order
perturbation expansion. The H” values are in good agree-
ment with other ab initio values. The small discrepancy is
due to the different sizes of basis set and the different inter-
nuclear distance considered in various calculations. The foot-
note in Table 3 explains it in detail.

The effective valence shell Hamiltonian formalism has
been extended to treat operators for properties and transition
moments other than the effective Hamiltonian for the val-
ence state energies. The lowest order correlation corrections
for the effective operators is analyzed for molecular proper-
ties corresponding to one-electron operators, and explicit
computations are presented for the dipole moments for seve-
ral low lying electronic states of the OH, OH"* and OH™ mole-
cules at the OH ground state equilibrium position.

Out computed dipole moments are in reasonable agree-
ment with configuration interaction calculations of the same
quantities that have been made using considerably larger ba-
sis sets, and this comparison supports the utility of the effec-
tive Hamiltonian method for molecular properties. Additio-
nal questions involve the convergence of calculated proper-
ties as a function of the basis set size and the contributions of
higher order corretions in the perturbation expansion for the
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effective operators A”. The latter question is a very difficult
one to answer at present because the next order corrections
involve several hundred diagrams“’ and, therefore, a rather
lengthy programing problem. However, experience with the
corresponding order corrections to energy calculations'®!®
show these higher order energy contributions often to be fai-
rly small. The two-electron matrix elements are small, but
significant, and it is clear that semiempirical theories with
only one-electron dipole operators must effectively be ave-
raging these two-electron contributions into their semiempi-
rical procedure.
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