DOI QR코드

DOI QR Code

Solvent Dependence of Absorption and Fluorescence Spectra of Piroxicam. A Possible Intramolecular Proton Transfer in the Excited State

  • Yoon, Min-Joong (Department of Chemistry, College of Natural Science, Chungnam National University) ;
  • Choi, Hyong-Nae (Department of Chemistry, College of Natural Science, Chungnam National University) ;
  • Kwon, Hwang-Won (Department of Chemistry, College of Natural Science, Chungnam National University) ;
  • Park, Koon-Ha (Department of Chemistry, College of Natural Science, Chungnam National University)
  • Published : 1988.06.20

Abstract

The spectral properties of piroxicam in different solvents are similar to those of its skeletal precursor, HMBDC. The maximum absorption and emission wavelengths strongly depend on the hydrogen bonding ability of the solvent, and it is shown that intramolecular hydrogen bonding between the -OH and the ortho carbonyl group of the parent benzothiazine ring plays an important role in the solvent-dependence of their spectroscopic properties. The fluorescence spectra in aprotic nonpolar solvent exhibit abnormally large Stokes-shifted (${\sim}9,000cm^{-1}$) emission bands in contrast to the spectra in water. In ethanol, dual emission bands with two different fractional components of lifetimes have been observed. These results suggest that the abnormally red-shifted emission is attributed to the proton transferred form of an intramolecularly hydrogen-bonded closed conformer.

Keywords

References

  1. Am. J. Med. v.72 N. E. Pitts
  2. J. Am. Acad. Dermatol. v.12 M. Bigby;R. Stern
  3. New Engl. J. Med. v.309 R. Stern
  4. Korean J. Dermatol. v.24 H. J. Park;Y. W. Cinn
  5. J. Invest. Dermatol. v.80 I. E. Kochevar;K. W. Hoover;M. Yoon
  6. Science v.179 A. A. Lamola;T. Yamane;A. M. Trozzole
  7. J. Med. Chem. v.16 J. G. Lombardino;E. H. Wisemand;J. Chiaini
  8. J. Org. Chem. v.30 H. Zinnes;R. A. Comes;F. R. Zuleski;A. N. Caron;J. Shavel Jr.
  9. J. Phys. Chem. v.75 J. N. Demas;G. A. Crosby
  10. Chem. Phys. Letters v.129 G. Picard;G. Munger;R. M. Leblanc;R. Lesage;D. Sharma;A. Seimiarczuk;J. R. Bolton
  11. J. Phys. Chem. v.61 E. G. McRae
  12. J. Am. Chem. Soc. v.105 S.-I. Nagoka;N. Hirota;M. Sumitani;K. Yoshihara
  13. Fluorescence Theory, Instrumentation and Practice E. L. Wehry;G.G. Guilbault(ed.)
  14. Principles of Fluorescence Spectroscopy J. R. Lokowicz
  15. Chem. Phys. Letters v.111 A. Mordzinski;A. Grabowska;K. Teuchner
  16. J. Phys. Chem. v.88 D. McMorrow;M. R. Kasha
  17. J. Phys. Chem. v.91c N. P. Emsting;A. Mordzinski;B. Dick
  18. J. Phys. Chem. v.89 S. R. Flomand;P. F. Barbara
  19. J. Phys. Chem. v.84 A. U. Acuna;F. Amat-Guerre;J. Catalan;F. Gonzalez-Tables
  20. J. Phys. Chem. v.90 T. Nishiya;S. Yamauch;N. Hirota;M. Baba;I. Hanazaki
  21. Chem. Phys. Letters v.68 P. K. Sengupta;M. Kasha
  22. J. Phys. Chem. v.85 K. K. Smith;K. J. Kaufmann
  23. J. Phys. Chem. v.86 J. Catalan;F. Toribio;A. U. Acuna
  24. J. Am. Chem. Soc. v.106 S. Nagaoka;N. Hirota;M. Sumitani;K. Yoshihara;E. Lipopynska-Kochany;H. Iwamura

Cited by

  1. ChemInform Abstract: Solvent Dependence of Absorption and Fluorescence Spectra of Piroxicam. A Possible Intramolecular Proton Transfer in the Excited State. vol.20, pp.1, 1988, https://doi.org/10.1002/chin.198901042
  2. HYDROPHOBICITY‐DEPENDENT FLUORESCENCE PROPERTIES AND INTRACELLULAR FLUOROSPECTROSCOPIC BEHAVIOR OF PHOTOTOXIC DRUGS vol.53, pp.3, 1988, https://doi.org/10.1111/j.1751-1097.1991.tb03645.x
  3. Fluorescence Piroxicam Study in the Presence of Cyclodextrins by Using the PARAFAC Method vol.53, pp.5, 1988, https://doi.org/10.1366/0003702991947054
  4. The Influence of Water on the Photophysical and Photochemical Properties of Piroxicam in AOT/Iso-octane/Water Reversed Micelles vol.71, pp.4, 1988, https://doi.org/10.1562/0031-8655(2000)0710405tiowot2.0.co2
  5. Spectroscopic studies of microenvironment dictated structural forms of piroxicam and meloxicam vol.99, pp.3, 1988, https://doi.org/10.1016/s0022-2313(02)00344-7
  6. A novel photoisomerzation of 1,2-benzothiazine 1,1-dioxides to 1,3-benzothiazine 1,1-dioxides vol.44, pp.4, 1988, https://doi.org/10.1002/jhet.5570440416
  7. A theoretical and spectroscopic study of conformational structures of piroxicam vol.75, pp.2, 2010, https://doi.org/10.1016/j.saa.2009.12.031
  8. Ultrafast Photodynamics of Drugs in Nanocavities: Cyclodextrins and Human Serum Albumin Protein vol.28, pp.17, 1988, https://doi.org/10.1021/la2049713
  9. Anti-inflammatory effect of active nanofibrous polymeric membrane bearing nanocontainers of atorvastatin complexes vol.12, pp.23, 2017, https://doi.org/10.2217/nnm-2017-0198
  10. Photophysical properties of anti‐inflammatory piroxicam and its Cu( II ) complex vol.42, pp.12, 1988, https://doi.org/10.1002/bkcs.12413