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An Efficient Adaptive Digital Filtering
Algorithm for Identification of Second

Order Volterra Systems
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ABSTRACT

This paper introduces an adaptive nonlinear digital filtering algorithm that uses the sequential re-
gression (SER) method to update the second order Volterra filter coefficients in a recursive way. Con-
ventionally, the SER method has been used to invert large matrices which result from direct application
of Wiener filter theory to the Volterra filter. However, the algorithm proposed in this paper uses the
SER gpproach to update the least squares solution which is derived for Gaussian input signals. In such an
algortihm, the size of the matrix to be inverted is smaller than that of conventional approaches, and hence
the proposed method is computationally simpler than conventional nonlinear system identification
techniques. Simulation results are presented to demonstrate the performance of the proposed algorithm.
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The Volterra series representation of sys-
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theory, has attracted considerable interest lately
(1-71. The output y(k) of a (causal) discrete-
time, nonlinear system can be represented
as a function of the input sequence x(k) using
the Volterra series expansion as

etk = he + 30 Bm )tk my)

M

+ 23 X 2 hylm, me, -, my

M= Mp=0 mp=3

x{k—m) xtk—my)-x{k--ma) +--, {1}

where hp(ml,m;,--—,mp) is the p-th order Volter-
ta kernal {1] of the system. In this paper, we
consider the identification of weakly nonlinear
systems [3) that can be represented using a
second order Volterra series. System analysis
using smaller order Volterra series has been
applied to nonlinear transistor circmits {3,8],
study of nonlinear drift oscillations of moored
vessels subject to random sea waves [6,7] and a
variety of applications involving weakly non-
linear systems.

Conventional approaches to nonlinear sys-
tem identification involve identifying an equi-
valent linear system whose inputs have been
augmented by second and higher order products
of the input sequence to take care of the non-
linearities [3,9). For example, when the re-
levant signals are stationary, applying the Wiener
filter theory to the second order system des-
cribed by the difference equation

-1 N—-1 N-1
viki~ 3 a, xtk- Y0 T3 be, oxtk-oi) x(k--j)
{20 iv9 =0

i2i

yields the following optimal minimum mean
squared solution [9]:

H=R;L Ry 13)

he (g, mp) x(k-n 0 Xtk mgti--

where
He{as. av. . a1, boa, bos. ~byoyonos]T, (4
R Ei X (k) X7 &) |, (5)
R, Ely (k) XK . {6)
and

X =[x{k), x (k- 1}, -, xtk= N+1), x* (k)

~rex{0) x(k}xtk— 1) —ruxil)
<o kN — (0T (7)

In the above equations and the rest of the
paper E| - { denotes the statistical expectation of
b - |, superscript T denotes matrix (vector)
transpose and

Tzylot) =Elx(k)v(k m}! I8}

From (3) it can be seen that computing the
optimal solution requires inverting an (N*4N)x
(N2+N) matrix, which may be computationally
very difficult for even moderatly large values of
N. Recently, Koh and Powers have shown that
when the relevant signals are Gaussian and the
optimal minimum mean squared solution is
sought, the order of the matrix to be inverted
is the same as that of the linear system (i.e.,
(NxN)) [6,7,11]. In this paper, we present a
least squares (LS) solution to the nonlinear
system identification problem, when the input
signals are Gaussian, The size of the matrix to
be inverted is the same as that of Koh and
Power’s approach, We also present an adaptive
algorithm that uses the sequential regression
(SER) method {9,101 to compute the LS solu-
tion in a recursive way. Thus the algorithm can
be applied to the problems with nonstationary
signals or time-varying nonlinear systems by
defining an appropriate window function.

The rest of the paper is organized as follows:
A formal statement of the problem is made in
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Section II. The LS solution is also derived in
this section. The adaptive Voiterra filter with
SER method is iniroduced in Section IIL. The
effectiveness of the proposed algorithm is de-
monstrated in Section IV using a simulation
example. Finally, we make the conciuding
remarks in Section V.

II. PROBLEM STATEMENT AND
OPTIMUM SOLUTION

Let H in Fig. 1 represent an unknown non-
linear system that can be represented as a causal
second order Volterra filter whose output
y(k) of the system can be expressed in terms of
the input sequence x(k) as

v =3 axk—1)r 3 5 b
i=0 {ud J=§
Fx(—i)x (k) —Ebx(ke—i)x (k—j) {} (9

where ai‘s and bij’s are the first and second
order Volterra kernals of the system. We will
assume that the input sequence x(k) is zero
mean and Gaussian. The last term Eix(k-i)x
(k-) in (9) is included without loss of generality,
so that the output sequence y(k) is also zero
mean. The output y(k) in (9) can be equivalently
expressed in matrix form as

y (k) =ATX (k) +trl B{X &) X" (k) ~Rux] 1 110}

where

X0 =[xtk), x{k 1}, -, xk=N+1D}T N

A’“{.ao- . T, aN—l]T 112a)
be.a by - ho,n-1
b . b N-1

B— l,‘o b |.. (12b}

b~-|.o bN-m bn—nu- 1

is a symmetric matrix so that biJ = bj,i’ Rxx =
E | X(k)XT(k}| is the autocorrelation matrix of
X(k), and tr; - jdenotes the trace of the matrix
§e

The problem here is to derive an adaptive
filtering algorithm that uses the SER method to
track the (possibly time varying) parameters A
and B of the Volterra filter in (10} so as to

minimize the cost functional
C A, B(k));-;: Gl k) 1w i) AT X 6)

el B K (X XT ) —Rax (kD T P (13

where carets () denote estimated quantities.
Also, q(i,k) is a weighting function for the

squared estimation error (y(i) - ?k(i))z, where

o (i) = AT (X (i) +1rf B k) [ XX 1) = Rex (K]
14

Tnput Output
Unknown y (k)
x (k) —=> system e (k)
H
e W
" H =
¥y (k)

Fig. 1. Block diagram for the system identification

problem
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is an e¢stimate of the output at time i based on

the parameter estimates A(k), B(k) and Ry, (k)
at time k. (Note that the time index k has been
used for the parameter estimates). For analytical
tractability, we will assume that the autocor-
relation matrix Ry, is estimated at time k as

Rux (k= i‘, ati, k)X GrXT 13

Substituting (15) in (13), the cost functional to
be minimized becomes

C ALK, Bum--zq kyiviiy [AT(K)XUt)

K
f Ty
Fert B (k) (X (D XT G %q

ity

We can minimize the above cost functional
with respect to f\(k) by setting the gradient of
C(A(k), B(k)) with respect to A(k) to zero
(ie., 7 A)C(AK),B(K)) = 0). After some st-
raightforward computations, we obtain

- 3

. a N-1 N-1
Ryx (K= Rux (VA + 35 3 Bmn (k) E

M=0 D=D =0

afi, kixtio mixG mX @

[ . P . :
I qu kXTI Bk Xl L§ gti, ki X))

J=¢ =
{n

where
Roe (k) = ";q (okdy () X4 18

and A(K) yields the minimum C(A(k),B(k))
for a given B(k).

If the weighting function q(i,k} for 0=
i <k represents the impulse response function of
a Iowpass filter with unif gain at zrerc frequencv
(i.e., }:, q(i,ky= 1), Eq(l k)x(i-j) and }“_‘, afi,k)x
(i- m)x(l»n)x(l-J) approxlmate the mean and third
order moment of x(k), respectively {12,13},
Now, since the input signal was assumed to be
zero mean and Gaussian, the odd order moments

Gk XGIXT i1 13

of the signal are zero and therefore, the second
and third terms of (17) are approximately zero.
Substitution of this in (17) results in the sim-
plified expression for A(k)

A (k) = Rik (k) Ry (k) (19

To compute ﬁ(k}, we once again set the
gradient of C(f\(k),f?.(k)} with respect to B(k) to
zero and obtain the LS solution

ém}u-é- Bai ) Ty (k) Rzt (k) {200
where

- k

ol = 5 a i)y DX DX 6). Q1

The derivation of (20) is given in Appendix A.

It may be pointed out here that the LS
solution in (19) and (20) have the same function-
al form as the optimum minimum mean squared
estimates for A and B derived in {6,7,11]). In
the next section, we will develop a recursive
algorithm for updating the least squares solution
at each time instant, when the weighting func.
tion q{i,k) is exponential,

Ill. THE EXPONENTIALLY WEIGHTED
SER ALGORITHM

The SER algorithm has been used to update
the optimum linear [10] and nonlinear (9]
filter coefficients in a recursive manner, In this
section, we adopt the LS solution in (]9) and
(22) and apply the SER algorithm to update
the Volterra filter weights that minimize the
cost functional given by (16) with the weighting
function g(i,k) selected as

glik) (1 gge! 2%

where(- 8 - 1.This weighting function penalizes



102 The Journal of the Acoustical Society of Korea, Vol. 7, No. 4 (1988)

the current estimation errors more than the
past ones. Smaller value of g makes the weighting
function sharper implying that only a shorter
history of the squared errors are effectively
used, The choice of z depends on prior know-
ledge of the stationarity of the signails and
systems involved, If system parameters change
very siowly, we will use g close to 1. On the
other hand, we will choose 8 to be smaller if the
parameters are known to change relatively fast.
It may be noted here that for large values of k

Eatw-1-pg=1 o3

and therefore the results in Section II are appli-
cable here. Thus rewriting the LS solutions in
(19) and (20}, we have

A= Rat () R,y (k) 24
and

é(k)=%ﬁ;; (1) Tn 00 B3 &) 9
where

R, 00= (-8 58 y ) XG) 28

R () = (1—8) 23 47 XD X 6) e
and

Toe 0= (1-8) 2 42y XWX () o8

To obtain the recursive relationships, we
proceed as follows: Substituting (26) and (27)
in (24) and replacing k by k-1 and multiplying
both sides by 2, we get

K-} .
il ‘”Z:, B "XUIXTWI AL 1)

(1—.&):3;._: Ay () XG) 2%

Note that in (29) we have used A(k) instead of
A(k), just to emphasize the fact that this is an
estimated quantity, even though it does re-
present the LS solution for A given by (24).
Similarly, we will use B(k) instead of B(k)
from now on,

Substitution of (26) in (24) yields

Rox (k) A (k) = (1--8) :‘Zo' B v )Xt (1 =81
v (k) X (k) 30

Substituting (30) in (29) and manipulating the
resulting equation, we obtain the recursive
relationship for A(k) as

A =Ak—1)+ (1 8) Rak (k) X (k)
[vk)—X"(kA (k- 1)]. i3

The derivation of the recursive relationship
for the quadratic weights is more involved, even
though straightforward. B(k} is related to B(k-1)
as
B (k} —; (1 i1 -8 Rzt (i Xik)XTik)i B (k=1

[T (18X X7 (k) Rk (k)

(1~ 81 v 1k Rk kX (kt XT k2 Ryl (k) 2320

2

where I denotes the N » N identity matrix. Now,
from (31) and (32), we can see that the Volterra
filter coefficients can be updated in a recursive
way if Ry (k! can be obtained in a recurstive
manner, Kxx (k' is computed using the relation-
ship

; L o 1
Rix (k) = o R (ko 10—
) : dik;

L8 o DXt XT R R 1 3
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where

d(k)=1+%’wamﬁ;;(k—nxm 64

and d(k) is assumed to be nonzero. Derivation
of (32) and (33) are given in Appendices B and
C, respectively. The recursive algorithm is sum-
marized in Fig. 2.

Koh and Powers have developed an adaptive
implementation of the optimal minimum mean
squared solution [6,7,11] using the LMS (Least

Mean Square) algorithm [14]. However, this
adaptive implementation results in convergence
properties that depend on the eigenvalue spread
of the input correlation matrix. Since the me-
thod proposed here is a recursive least squares
solution, the convergence speed is independent
of the signal statistics and depends only on the
weighting function employed.

It may be pointed out that convergence of
the LS solution to the optimal minimum mean
squared estimate can be proved under assump-
tions of uncorrelated input vectors. Interested

Inftialfzation
A(-1) = 0
8(-1) = 0
a-1

Rxx('l) = 1

k=0

N
7

Yk-1) -

~-1 1 -
R (k)= 5 R~

XX B xx

1+ l%E XT(k)ﬁ;:(k-l)X(k) 6

(28 &1 x(k)xT )R- (k-1 ]

A(K) = A(k=1) + (1-8) RE(OX()[y(k) - X' (K)A(K-1)]
B(k) = 3 [1-(1-8) R ()x(xxT(K) ] B(k-1)[1-(1-8)x(k)XT (R 1)

+ 3 (1-8)y(k) RZ2 X (XT(KORZ L (k)

<

k = k+l

]

~

Fig. 2. Second Order Adaptive Volterra Filter With SER Algorithm
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readers are referred to [17].

Due to improper model order selection or
due to zerc input to the system for arbitrary
lengths of time, it is possible that the auto-
correlation matrix lixx(k) is singular or ill-
conditioned. To avoid problems that arise
from inverting such matrices, we may modify

Rxx(k) as
}::(xx {k) ='Rxx (k) ful 26

where u is a small positive number. The effect
of this modification is that of adding a small
amount of white noise to the input sequence
which will ensure that ilxx(k) is nonsingular
[10}.

In the next section, we will demonstrate
the usefulness of the proposed algorithm with a
simulation example.

IV. A SIMULATION EXAMPLE

To study the performance of the proposed
algorithm, we consider the system jdentification
problem for a second order Volterra filter whose
coefficients A and B are given by

A—[ aan[ U»b] a5
a 0.2 "
and
bes  bo.s 0.3 0.1
B= = K
[_ br.o bm] -0.1 0.15 ‘“

Note that B is symmetric, The system identi®ica-

tion problem is schematically dipicted in Fig, 1.
where the reference input x(k) is white, Gaussian

with 2ero mean and unit variance and y(k)
is obtained from x{(k) using (10) where A and B
are given by (35) and (36), respectively.

Thirty independent simulations were run
using 2000 data samples each with 8 = 0,998,
and the results presented are averaged over the
thirty runs. After 2000 iterations, the ensemble

averages of the parameter estimates were

0.5891]

A 12000) - [ —0.1977

37

and

- 0.2799 -0.0988
B (2000} = Ja
—0.0988 - 0.1352

Figures 3a-e display plots of ensemble
averages of 2,(k), & (k),by (), by (k)b 4k and
bu(k), respectively, From (37) and (38) and
also these figures, we can see that the estimates
converge to the true values, Note that in (37)
and (38), the differences among the true and
estimated parameter values at the 2000-th
iteration are within ten percent of the correct
values and are well within the ranges expected
from statistical variability. Also, the ensemble
average of the squared estimation errors {({y(k)-
y(k))?) are displayed in Fig. 3f. This result
demonstrates that the estimation error decreases
exponentially with time.

So(k)

T 17 1 1T 1 7

0.0 k 2000.0

(b ;l(k)
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i (. }J" !
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0.00 .\Nﬂh“ﬁi&i&@u* VU REUr S S VA
0.0 « 2000.0
et ks

Fig. 3. Ensemble averages of the system identification
problem in the simulation example

V. CONCLUSION

The adaptive second order Volterra filter
empioying the sequential regression method was
developed in this paper. The recursive algorithm
updates the least squares solution that minimizes
the cost functional in (16), when the weighting
function q(i,k) is exponential. The method deve-

loped in this paper differred from conventional
nonlinear system identification techniques in
that the order of the matrix to be inverted was
the same as that for linear system identification
problems. The Gaussian assumption for the
input signal sequence was crucial in this large
reduction in computational complexity,

The method developed in this paper differ-
red from Koh and Power’s least mean square
approach in that the convergence of our algor-
ithm was independent of the eigenvalue spread
of the input autocorrelation matrix, Instead, the
convergence speed depends only on the weight-
ing function used.

The effectiveness of the adaptive system
identification algorithm was demonstrated using
a simulation example, The computational sim-
plicity of the proposed method over convention-
al nonlinear system identification techniques
along with its convergence properties should
make it a prime candidate for system identifi-
cation of weakly nonlinear systems that can be
represented/approximated as second order Vol-
terra series.

APPENDIX A
LEAST SQUARES SOLUTION FOR B(k)

We minimize the cost functional in (16)
with respect to fi(k} by setting the gradient of
C(A(K),B(k)) with respect to B(k) to zero (i.e.,
7iw CLAtk, BIk))= 0). After some computa-
tions and using the following relationship

Pl te[BRIXEHXTGH =XHX (), (A1)

We obtain

K

fe F. - PR s k . L
IZ" ait kiv i X)X (i) =L?:l qli, k) y ()]
- =Q

K

s-a

. L3
[Sali.k) A" 0XO) [ at W XX ()]
[} =9

®
Lah kIX g iXtion e ‘Z].qf',_ Wi AT X X v

(55, (06,10 X ) B0 X |0 60X Q)X )]



106 The Journal of the Acoustical Society of Korea, Vol. 7, No. 4 (1988)

1-3a6.01+ B 1G0T 5 bna k)

G G=m)xG—m — 3 4.6, Kx G—m)x G—n))]

X ()X ()1 a2)
As discussed in Section I, ¥ q(ik)x(i4) and
?:_;. q(i,k)x(i-m)x(i-n)x(i4) approximate the mean

and third order moment of x(k), respectively,
and the following approximations also hold:

Z a6y O =Ely) |~ 0 (A3)

0610 A WXEHX0 X G)
=3 a6, k) [as 0x () +a, (Oxli— 1)+

Fap K G—NFDIX@HX ) =0 (Ag)

and
31 0K AT X G) =0 00 [ 5 G, kx ()]
+a ) [gq(i,k)x(i—l)} +oon

Foa (506X G-N+ 1) =0 (A5)

Using (A3) ~ (A4), (A2) can be simplified as
2 2l Ky OXOX ()
=‘>:-°5 qfi, k) [ :g: :z;:; bma (k) (x (i - m)x(i--n)

k
=2l k) xG—m)x(-n X X" () L(A6)

The right hand term of (Aé) is an N ~ Nmat-
tix whose(g+1,!: 1)th element te+y s - LK) is

I 25 U S 3
tgorta ikl =25 3 boafki! D g, kiIxG mt
Mm=0 N=0 140

x(i-n)x—g)x -1

3

=[5 al, KxG—m)x(—n)] Eéqf_i.k) x (- g

xG—111 (A7)

As discussed before for sums of smaller
order products of the input sequence x(Kk),
the weighted sum of the fourth order products
of x(k) in (A7) approximates the fourth order
moment of x(k). That is

K
gq(i, KIxli--mix{i—n)x (- gdx (i - 1)

=ElxG—m)x(i—n)x(i—g)x (i— 1)} (A8}

Since the fourth order expection of Gaussian
signals can be written as sum of product of
second order expectations as [15]

Elx(i m)xG—n)x(i—-gx{i—
=Efx(i-m)x(i--n}l E}xG—glxti—{)|
+E x{i-m)xG- g) FElxti- mdx{i—¢)}1

—Eix(i-mixG- DIElx{-n)xti--g)t (A9

we can approximate the left hand side of (A8) as

¥ K
[tZlq(i,k)xfi me(i—-n);qu:i.k;x{'i gixii

Lk . &
i:;lzoqii,k}xfi—m}xli-g.\j[zqfi,.’k?xli HERRY

=0

[ S ki mixti - 0]

i=o

o L3 -
{a ali.kIx (- nixti g)] AN

Substituting the above in (A7), we obtain

z

U L x
taotro1 tRET “‘Z b, ki 22 g kNt e

=0 poo =0

z

L]
TR D DT TN S LA AN TR R AR
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‘*‘[gq(i.k)x(i—m)x {i- 1))

[I); ql.k)xGi—n)xi—g)]|. (A1D)

Noting that Em’n(k) = l}an,m(k), it can be easily
seen that (All) is exactly the same as the (g+1,
/+1)th element of the-Nx N matrix 2R (k)
B(K)Rxx (k). Then (A6) can be simplified to the
LS sclution for ﬁ{k) as

Bk) - %R;; () Tye ) R32 (k) (A12)
where
- 13
T,,.(k)*!g° qli, K}y (DX HX" () (ALD)
APPENDIX B
RECURSIVE COMPUTATION OF

QUADRATIC FILTER COEFFICIENTS

To obtain the recursive relationship for the
quadratic filter coefficients, we proceed as
follows: Substituting (27) and (28) in (25)
and replacing k by k-1, we get

(1-,8)2: Ay Y X WX ()
2 M- . . N
) [((1--8) I}:,‘. B XWMXTHIBK -1}

[(1-8) & 8% X )X )] B1)

{=d

where B(k) is used to instead of B(k). Also,
substitution of (28) into (25) and a simplifica-
tion yield

9B kI Bk R (kY= 1 - B3 50 A% v i b X G X o0

+(1—8)y (k) X KXk (R2?

Substituting (B1) in (B2), we obtain

2 Ba (k) B Rx () =§ [(1-8) %, £ X0)
XT)BG-DI(1-8) 5 £ XX ()]
£ (1-8)y @) X k) XT{K) . (83)

We will use the following simple matrix equality
on (B3):

ABA={A+C)B(A+C)- DBA—ABC—CBC,
(B4)

Letting (I- 8) & & X@XT(i), Bk-1) and
(1-8)XW)X" (k) to be matrices A, B and C
in (B4) and substituting (B4) in (B3), we get
Bxx (k) B (k) Ry (K -é[[l—ﬁ) Eﬁ“-*xn)x’m

s A-X KX W) Bik- 1)

[(1-/F £ XOX G+ (1-8) X WX )]
‘~§{(1—H)X(k)XT(k)] Bk—110(1 - 41]

'}3' AV X G X ()

~ﬁ[( 1=8) 5, £ XOXT ) Bl 1)

[(1-8)X &)X (k)]
—é[u AKX OO XT ] B—1) [(1~8) X () XT (k)]
1

+E(l—ﬁ).\.'(k)X(k}X‘ (k) {(BS})

Substitution (27) in (BS) and a rearrangement
results in the recursive relationship for B(k) as
5 ik - 8 o B B the A RIAT ke

Bk~ 1} [ (1- 23X (X" KRz ()

+—2‘— (1—8)y (0 Rk ()X (K) X7 (k) Rzl (k) (B6?
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where I denotes the N X Nidentity matrix.

APPENDIX C
RECURSIVE COMPUTATION OF
INVERSE AUTOCORRELATION MATRIX

From (18), it follows that
R 0= (1 -8) T, £ XOX ()

+{1- 8) XK)XT (k) (C1)

=8 R (k— 1)+ (1-8) X{k} X" (k) {c2)

To compute Rzt (k)we can use the matrix inverse
lemma [16] which says that if A and B are
nonsingular square matrices such that

A=B+CD and 1+DB™' C#0,

1

-t
A B 1+DB"'C

B CDB™" _
(C3)

Applying the mairix inverse lemma to (C2)
with Ry, (k), 8Rux (k-1), (1-8)X(k) and X" (k)
being matrices A, B, C and D, respectively,
results in the recursive relationship

1 .;,:(k-'- 1)- 1 [ 1—8 s

Rx (k) 2 TR 7

(k— 1) X (k) X" (k) Ry (k— 1)

L ¥
where

Ak} = 1 -1------1-;;—'@ X" () Rk (k= 1) X (k)
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