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ABSTRACT

This paper introduces an adaptive nonlinear digital filtering algorithm that uses the sequential re­

gression (SER) method to update the second order Vol terra filter coefficients in a re 이!!'sive way. Con­

ventionally, the SER method has been used to invert large matrices which result from direct application 

of Wiener filter theory to the Volterra filter. However, the 시gorithm proposed in this paper uses the 

SER approach to update the least squares solution which is derived for Gaussian input signals. In such an 

algortihm, the size of the matrix to be inverted is smaller than that of conventional approaches, and hence 

the proposed method is computationally simpler than conventional nonlinear system identification 

techniques. Simulation results are presented to demonstrate the performance of the proposed algorithm.

요 약

본 연구는 이차 볼테라 필터 계수를 연속적으로 변화시 키 기 위하여, sequential regression (SER? 방법을 이 요-한 

적응 비선형 디지탈 필터링 알고리즘에 대하여 서술하였다. 일반적으로' SER 방법은 Bierwr 핕더 이론을 볼레 가少! 

에 직접 적용시킬때 생기는 큰 행렬을 역변환시키기 위하여 사용되었다 그러나, 본 연〒예시는 입러신亨가 가 ? 시아 

일 경우. 최소 자숭해를 구하기 위하여 SER 방법을 이용하었다. 이 알고리즘에서. 억변횐시킬 행렬의 크기는 익 반직 십 

근 방법보다 작게 되기때문에, 일반적 비선형 시스템 인식 기술보다 본 연구에서 제시한 방법의 계산량이 직다. 孕 시 

구에서 제안한 알고리즘의 성능을 검토하기 위하여 시뮬레이션 결과를 구했匸"

L INTRODUCTION

The Volterra series representation of sys­

tems. which is an extension of linear systems
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theory, has attracted considerable interest lately 

[1-7]. The output y(k) of a (causal) discrete­

time, nonlinear system can be represented 

as a function of the input sequence x(k) using 

the Volterra series expansion as

v h0 4- 2 hi (mi ) mi ) 
mi = 0

「£ Xj (mi, mi) x (k - ) x(k m? j *
mi =o m2=0

T 立 S …方 hp (mlt m2, •••, mp) 
mi = o mi tn p=0

x (k —mi) x (k—ni2)---x(k- - mp) -- , (1)

99

where

at, a.n-1, b0,0, bo. i.…⑷

Rxx= Ei X (k) XT (k) I, ⑸

R„-' E!y(W X(k) I. ⑹

and

X (k) = [x(k), x (k- 1), x (k— N + l), x2 (k)

…Jx(0), x(k)x(k— 1 ) — Fxx(i),

X2 (k--N+l)-rxx(0)]T. (7)

where ,mp) is the p-th order Volter­

ra kernal [1] of the system. In this paper, we 

consider the identification of weakly nonhnear 

systems [3] that can be represented using a 

second order Volterra series. System analysis 

using smaller order Volterra series has been 

applied to nonlinear transistor circuits【3,8], 

study of nonlinear drift oscillations of moored 

vessels subject to random sea waves [6,기 and a 

variety of applications involving weakly non­

linear systems.

Conventional approaches to nonlinear sys­

tem identification involve identifying an equi­

valent linear system whose inputs have been 

augmented by second and higher order product옹 

of the input sequence to take care of the non­

linearities [3,9]. For example, when the re­

levant signals are stationary, applying the Wiener 

filter theory to the second order system des­

cribed by the difference equation

N-l N-l N-l
(k) ■"- S 幻 x (k- i)，£ 2Z bz. j x(k- - i) x (k — j) 

f = 0 (= 0 J
⑵

yields the following optimal minimum mean 

squared solution [9]:

H=Rxx Rvx (3)

In the above equations and the rest of the 

paper E! - I denotes the statistical expectation of 

I - I, superscript T denotes matrix (vector) 

transpose and

rxy im) —■ E! x (k) y (k m) ! ‘8)

From (3) it can be seen that computing the 

optimal solution requires inverting anlPF우N)x 

(N2+N) matrix, which may be computationally 

very difficult for even moderatly large values of 

N. Recently, Koh and Powers have shown that 

when the relevant signals are Gaussian and the 

optimal minimum mean squared solution is 

sought, the order of the matrix to be inverted 

is the same as that of the linear system (Le., 

(NxN)) [6,7,11]. In this paper, we present a 

least squares (LS) solution to the nonlinear 

system identification problem, when the input 

signals are Gaussian. The size of the matrix to 

be inverted is the same as that of Koh and 

Power's approach. We also present an adaptive 

algorithm that uses the sequential regression 

(SER) method [9,101 to compute the LS solu­

tion in a recursive way. Thus the algorithm can 

be applied to the problems with nonstation효ry 

signals or time-varying nonlinear systems by 

defining an appropriate window function.

The rest of the paper is organized as follows: 

A formal statement of the problem is made in 
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Section II. The LS solution is also derived in 

this section. The adaptive Volterra filter with 

SER method is introduced in Section III. The 

effectiveness of the proposed algorithm is de­

monstrated in Section IV using a simulation 

example. Finally, we make the concluding 

remarks in Section V.

II. PROBLEM STATEMENT AND 
OPTIMUM SOLUTION

Let H in Fig. 1 represent an unknown non­

linear system that can be represented as a causal 

second order Volterra filter whose 이itput 

y(k) of the system can be expressed in terms of 

the input sequence x(k) as

N-1 N-l N-l
y (k) = 2= an x (k—1)十 Zj bi, j
" £ = 0 t = 0 J =0

i x(k—i)x (k — j) — E| x (k—i)x (k~ j) } ! (9)

where a-'s and bi /s are the first and second 

order Volterra kernals of the system. We will 

assume that the input sequence x(k) is zero 

mean and Gaussian. The last term E( x(k-i)x 

(k-j)! in (9) is included without loss of generality, 

so that the output sequence y(k) is also zero 

mean. The output y(k) in (9) can be equivalently 

expressed in matrix form as

y(k)=ATX(k)4tr|B[X(k)XT (k)…Rxx] I (10)

where

X(k)= [x(k), x(k 1 ),…，x(k—N十 1)卩 ”1)

A=- [a0,

B =

aN_5]T

bo.o bo.i - •- bo.

bi, o bi.i - '■ bi.i

bbi-1, o bN-L 1 ■■- bN

(12 a)

(12 b)

is a symmetric matrix so that b” = bj * Rxx = 

E ! X(k)XT(k)l is the autocorrelation matrix of 

X(k), and tr； • ； denotes the trace of the matrix 

1 - }

The problem here is to derive an adaptive 

filtering algorithm that uses the SER method to 

track the (possibly time varying) parameters A 

and B of the Volterra filter in (10) so as to 

minimize the cost functional

C (A (k), B (k)) - £ q(i, k) I y (i ) [ AT (k)X (i) 

i = 0

* tri B (k) (X(i)XT (i)-RXx (k)) I]卩 (13)

where carets ( ) denote estimated quantities.

Also, q(i,k) is a weighting function for the 

squared estimation error (y(i)%£))七 where 

yk (i) -AT (k)X(】)十 E B (k) ：X(i)XT (i)-Rxx WJ ；

(14 

Input 

x(k)

Fig. 1. Block diagram for the system identification 
problem
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is an estimate of the output at time i based on 

the parameter estimates A(k), B(k) and Rxx(k) 

at time k. (Note that the time index k has been 

used for the parameter estimates). For analytical 

tractability, we will assume that the autocor- 

호elation matrix Rxx is estimated at time k as

Rxx(k)-= E q(i, k)X(i)XT(i) (15)
i - G

Substituting (15) in (13), the cost functional to 

be minimized becomes

C (A(k),心(k).)二五 q(i, k) E(i) lAT (k)X(i)

t =o

rtriB(k) (X(i)XT Gr-^q(j(k)X(j)XT(j)H]!2

(16)

We can minimize the above cost functional 

with respect to A(k) by setting the gradient of 

C(A(k), B(k)) with respect to A(k) to zero 

(ie,矿A(k)C(A(k),如k)) = 0). After some st­

raightforward computations, we obtain

_ . 。 N-l N- 1 K
R„(k)-Rxx(k) A(k) + E E 6m.n (k)[ E 

m=0 n=0 (=0

<j (i, k ) x G m) x (i - n) X (i) j

- [S q(j, kjXT ⑴白(k) X⑴」LE k)X(>)J 
J = Q 4 = 0

(17)

where

R”(k) = 2Z q (i, k) Y (i) X (i) (18)
i =o

and A(k) yields the minimum C(A(k),B(k)) 

for a given B(k).

If the weighting function q(i,k) for 0< 

i <k represents the impulse response function of 

a lewpass filter with unit gain at zero frequency 

(i.e., E q(i,k) 그 1), 立 q(i,k)x(i-j) and 倉 q(i,k)x

i = 0 i - 0 i T)

(i-m)x(i-n)x(i-j) approximate the mean and third 

order moment of x(k), respectively [ 12,13]. 

Now, since the input signal was assumed to be 

zero mean and Gaussian, the odd order moments 

of the signal are zero and therefore, the second 

and third terms of (17) are approximately zero. 

Substitution of this in (17) results in the sim­

plified expression for A(k)

A(k) =^Rxl (k)畠x (k) (19)

To compute B(k), we once again set the 

gradient of C(A(k),B(k)) with respect to B(k) to 

zero and obtain the LS solution

B(k)=j RM (k) Tvx(k)Rxi (k) (20)

where

T,x(k) = Eq(i.k)y(i)X(i)XT (i). (21)
i = o

The derivation of (20) is given in Appendix A.

It may be pointed out here that the LS 

solution in (19) and (20) have the same function­

al form as the optimum minimum mean squared 

e오timates for A and B derived in [6,7,11]. In 

the next section, we will develop a recursive 

algorithm for updating the least squares solution 

at each time instant, when the weighting func­

tion q(i,k) is exponential.

Ill, THE EXPONENTIALLY WEIGHTED 
SER ALGORITHM

The SER algorithm has been used to update 

the optimum linear [10] and nonlinear [9] 

filter coefficients in a recursive manner. In this 

section, we adopt the LS solution in (19) and 

(22) and apply the SER algorithm to update 

the Volterra filter weights that minimize the 

cost functional given by (16) with the weighting 

function q(i,k) selected a몽

q(i,k)…(1 硏辭' (22'i

where ()■ < 1 This weighting function penalizes 
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the current estimation errors more than the 

past ones. Smaller value of fi makes the weighting 

function sharper implying that only a shorter 

history of the squared errors are effectively 

used. The choice of b depends on prior know­

ledge of the Nationality of the signals and 

systems involved. If system parameters change 

very slowly, we will use q close to 1. On the 

other hand, we will choose & to be smaller if the 

parameters are known to change relatively fast. 

It may be noted here that for large values of k

S q(i,k)= 1 —1 (23)
1=0

and therefore the results in Section II are appli­

cable here. Thus rewriting the LS solutions in 

(19) and (20), we have

A(k) = Rx；(k)Ryx(k) (24)

and

B(k) = |Rxi (k)Tyx (k) Rx^ (k) (25)

where

Ry (k) = (1—戶)£ y (i) X (i) (26)
1 =0

Rxx(k) = (l一胃)膈T X(i)XT (i) (27)

1=0

and

，&(k)= (1") g y⑴ X(i)XT (i) (28)

To obtain the recursive relationships, we 

proceed as follows: Substituting (26) and (27) 

in (24) and replacing k by k-1 and multiplying 

both sides by B, we get

■ (1-硏冥 1 X ⑴ XT ⑴ I A(k 1)

■ 1 =0

=(1—8)歹 y(i) X(i) (29)

i = o

Note that in (29) we have used A(k) in가ead of 

A(k), just to emphasize the fact that this is an 

estimated quantity, even though it does re­

present the LS solution for A given by (24). 

Similarly, we will use B(k) instead of B(k) 

from now on.

Substitution of (26) in (24) yields

Rxx (k) A(k) = (1一£)歹伊T y(i)X(i‘i(l一£) 

i=0

y(k)X(k) (北)

Substituting (30) in (29) and manipulating the 

resulting equation, we obtain the recursive 

relationship for A(k) as

A(k)-A(k-1)+(1 (k)X(k)

[y (k) ~XT (k) A (k-1)]. "

The derivation of the recursive relationship 

for the quadratic weights is more involved, even 

though straightforward. B(k) is related to B(k-l) 

as

B (k) —Hl ( 1 —/9) Rxi (k) X(k)XT (kj] B(k- 1) 

p
[I - (1 U)X(k) XT (k) Rxi (k)J

十 * (1- /3') y (k) Rxi (k)X(k) .XT (k) Rxi (k) (32)

where I denotes the N * N identity matrix. Now, 

from (31) and (32), we can see that the Volterra 

filter coefficients can be updated in a recursive 

way if Rxi (k) can be obtained in a recurstive 

manner. Rxiis computed using the relation­

ship

Rxi (k) = Rx； (k r> -777;
p d (k)

I 丄w。Rxi Sk l >X(k> XT ik) Kx； Ck 1) ] ：3j
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where

d(k)= 1 +-^-^-XT (k) Rxx (k- 1 )X(k) (34)

p

and d(k) is assumed to be nonzero. Derivation 

of (32) and (33) are given in Appendices B and 

C, respectively. The recursive algorithm is sum­

marized in Fig. 2.

Koh and Powers have developed an adaptive 

implementation of the optimal minimum mean 

squared solution [6,7,11 ] using the LMS (Least 

Mean Square) algorithm [ 14]. However, this 

adaptive implementation results in comrergence 

properties that depend on the eigenvalue spread 

of the input correlation matrix. Since the me­

thod proposed here is a recursive least squares 

solution, the convergence speed is independent 

of the signal statistics and depends only on the 

weighting function employed.

It may be pointed out that convergence of 

the LS solution to the optimal minimum mean 

squared estimate can be proved under assump­

tions of uncorrelated input vectors. Interested 

Fig. 2. Second Order Adaptive Voltena Filter With SER Algorithm
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readers are referred to [17].

Due to improper model order selection or 

due to zero input to the system for arbitrary 

lengths of time, it is possible that the auto­

correlation matrix Rxx(k) is singular or ill- 

conditioned. To avoid problems that arise 

from inverting such matrices, we may modify 

女xx(k)as

Rxx (k)=Rxx (k)+ul (26)

where u is a small positive number. The effect 

of this modification is that of adding a small 

amount of white noise to the input sequence 

which will ensure that Rxx(k) is nonsingular 

[10].

In the next section, we will demonstrate 

the usefulness of the proposed algorithm with a 

simulation example.

IV. A SIMULATION EXAMPLE

To study the performance of the proposed 

algorithm, we consider the system identification 

problem for a second order Volterra filter whose 

coefficients A and B are given by

r a0 i r 0.6 ]
A= H 飾)

[釦」L —0.2」

and

[bo.o b0,11 「 0.3 ~0.1 i
B= k h = B6)

L b" b】.」L 一o i 0.15J

Note that B is symmetric. The system identifica­

tion problem is schematically dipicted in Fig. 1, 

where the reference input x(k) is white, Gaussian 

with zero mean and unit variance and y(k) 

is obtained from x(k) using (10) where A and B 

are given by (35) and (36), respectively.

Thirty independent simulations were run 

using 2000 data samples each with 8 = 0.998, 

and the results presented are averaged over the 

thirty runs. After 2000 iterations, the ensemble 

averages of the parameter estimates were

A (2000)=[ 0.5891-1

—0.1977」 (37)

and

B (2000)
0.2799

-0.0988

0.0988-

0.1352-
(38)

Figures 3a-e display plots of ensemble 

averages of aQ(k), "k)&槌(k), bOJ(k),bli0(k) and 

b (k), respectively. From (37) and (38) and 

also these figures, we can see that the estimates 

converge to the true values. Note that in (37) 

and (38), the differences among the true and 

estimated parameter values at the 2000-th 

iteration are within ten percent of the correct 

values and are well within the ranges expected 

from statistical variability. Also, the ensemble 

average of the squared estimation errors ((y(k)- 

y(k))2) are displayed in Fig. 3f. This result 

demonstrates that the estimation error decreases 

exponentially with time.

(a) aQ(k)

(b) 气(心
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(c)

Fig. 3. Ensemble averages of the system identification 
problem in the simulation example

V. CONCLUSION

The adaptive second order Volterra filter 

employing the sequential regression method was 

developed in this paper. The recursive algorithm 

updates the least squares solution that minimizes 

the cost functional in (16), when the weighting 

function q(i,k) is exponential. The method deve­

loped in this paper differred from conventional 

nonlinear system identification techniques in 

that the order of the matrix to be inverted was 

the same as that for linear system identification 

problems. The Gaussian assumption for the 

input signal sequence was crucial in this large 

reduction in computational complexity.

The method developed in this paper differ­

red from Koh and Power's least mean square 

approach in that the convergence of our algor­

ithm was independent of the eigenvalue spread 

of the input autocorrelation matrix. Instead, the 

convergence speed depends only on the weight­

ing function used.

The effectiveness of the adaptive system 

identification algorithm was demonstrated using 

a simulation example. The computational sim­

plicity of the proposed method over convention­

al nonlinear system identification techniques 

along with its convergence properties should 

make it a prime candidate for system identifi­

cation of weakly nonlinear systems that can be 

represented/approximated as second order Vol­

terra series.

APPENDIX A
LEAST SQUARES SOLUTION FOR B(k)

We minimize the cost functional in (16) 

with respect to B(k) by setting the gradient of 

C(A(k),B(k)) with respect to B(k) to zero (i.e., 

卩 Sg C〔A(k), B(k)]= 0). After some computa­

tions and using the following relationship

卩詠,I tr[B (k)X ⑴須(i) I =X(i)XT (i), (Al)

We obtain

£ 아 (i, k)y ① X ⑴⑴ = [£； q(it k)y (i)j
I - 0 i - o

j-Q j

[gq(i.k) AT (k)X(i)] k)X(j)XT (j)]

IS (q(i,k)XT (i)B(k)X(i)]LS(q (j,k)X(j)XT(j)J 
i «0 jd



106 The Journal of the Acoustical Society of Korea, Vol. 7, No. 4 (1988)

[l-Eq(i,k)] + Elq(i,k)[E S bm,n(k) 
1-0 1=0 m=o n =o

(x (i —m)x(i — n)—打°q (j, k)x (j — m)x (j —n))]

X(i)XT (i)| (A2)

k
As discussed in Section II, S q(i,k)x(i』)and

k * =o
S q(i,k)x(i-m)x(i-n)x(i-j) approximate the mean
i =0

and third order moment of x(k), respectively,

and the following approximations also hold:

S q (i, k) y (i) ~E| y (i) | - 0 (A 3 )

Eq(i,k) AT (k)X(i)X(i)XT (i)
1=0

=£； q (i, k) [a0 (k)x(i)+a〔 (k)x(i— 1 )H—•

+ aN_! (k)x(i —N+1)]X ⑴ X「(i) =0 (A 4)

and

L； q (i, k) AT (k)X (i) =a° (k) [Sq (i, k)x (i)]
i = 0 i kQ

+ 为(k) [ 22 q (i, k) x (i — 1)] T—
i =o

+ aN_! [、q (i, k)x (i —N+ 1)] ~ 0 (A 5 ) 
1-0

Using (A3) - (A개), (A2) can be simplified as

S q (i, k)y ⑴X (iX (i)
i =o

k N-l N-l _
=£ I q (i, k) [ 2二 Xj bm,n (k) (x (i -■ m)x(i~n)

i=o m=o n=o

—以q (j, k) x (j —n) ) ] X (i) XT (i) } .(A6 )

The right hand term of (A6) is an N x Nmat­

rix whose(g+l,Z ' l)th element tg+1 / ,】(k) is

Ji. I - i(k) ‘= E Zj bm, n (k ) ! q (i, k) x (i m) m = 0 n = 0

x(i —n)x(i~g)x (i — Z)

q (j, k)x(j —m)x(j —n)] [ S q (j, k) x (j - g)
>=o J=0

x(j-Z)] I (A 7 )

As discussed before for sums of smaller 

order products of the input sequence x(k), 

the weighted sum of the fourth order products 

of x(k) in (A7) approximates the fourth order 

moment of x(k). That is

科q (i, k) x (i -m)x (i —n)x (i - g)x (i -- /)

~E| x (i — m)x (i~n)x (i —g)x (i— I) | (A 8 )

Since the fourth order expection of Gaussian 

signals can be written as sum of product of 

second order expectations as [15]

E| x (i …m)x (i —n)x(i — g)x (i — /)(

=E| x (i — ni)x(i ■ - n) | E! x (i—g)x(i— I ) |

+ E| x (i- m)x(i - g) I E| x(i - n)x (i —/ ) |

十 E|x (i I) \ E| x (i — n)x (i-”g) I (A 9 ) 

we can approximate the left hand side of (A8) as

k ^ 、 k
[22 q (i, k) x (i m)x (i — 门)][£ q (i, k (i g)x (ii = 0 i == 0

„ k k
十〔习 q (i, k )x(i — m)x (i …g) 1 [ q ", k 3 6 n ，

i =0 i- 0

+〔 £ q(i, k)x(i m)x(i - 1)]
i =0

k
I E q G, k)x G-- n)x (i g ) i < /X 10

t =0 ■

Substituting the above in (A7), we obtain

n. i.「I tkj …Ej (k) i - Em u. Kj x; i i)i;
m- 0 n = o

k
\ iI g H ■ (i. k)x (i • • n)x (i I )
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+ [ S q (i, k)x (i —m)x (i— /)]

[S q (i, k)x(i —n)x(i — g)] ] . (All)
i =0

Noting that bm n(k) = bn m(k), it can be easily 

seen that (All) is exactly the same as the (g+1, 

, +1) th element of the-N x N matrix 2R (k) 

B(k)Rxx (k). Then (A6) can be simplified to the 

LS solution for B(k) as

B(k)=|Rxi (k)亍护(k) Rxi (k) (A 12)

where

Mx(k) = ^ q(i, k)y (i)X(i)XT (0 (A13)

1 -0

APPENDIX B 
RECURSIVE COMPUTATION OF 

QUADRATIC FILTER COEFFICIENTS

To obtain the recursive relationship for the 

quadratic filter coefficients, we proceed as 

follows: Substituting (27) and (28) in (25) 

and replacing k by k-1, we get

(1一幻另研Ty(i)X(i)XMi)

t =0

9 k-l 〜
[(1—8)S i8k-1X(i)XT(i)] B(k 1)

P 1 =0

[(1—们気物-‘XG)X「(i)] (Bl)

t =0

where B(k) is used to instead of B(k). Also, 

substitution of (28) into (25) and a simplifica­

tion yield

t -0

+ (l-/9)y(k)X(k)XT (k) (R2)

Substituting (B1) in (B2), we obtain

- * 2 广 %긔 , , 、
2Rxx(k)B(k)Rxx(k)=£ (1 —们 刀 £iX(i) 

B t=o

XT(i)]B(k- 1)[( 1—g) l X(i)XT (i)]
i-o

+ (1—g)y(k)X(k)XT(k). (B3)

We will use the following simple matrix equality 

on(B3):

ABA= (A+C)B(A4-C)-- DBA-ABC-CBC,

(B4)

k-i
Letting (1-8)召 宀' X(i)XT(i), B(k-l) and 

(l-^)X(k)XT (k) to be matrices A, B and C 

in (B4) and substituting (B4) in (B3), we get

，、 - a 1 k-l
Rxx(k) B (k) Rxx (k) =土[(1P) S x (i)XT ⑴ 

p 1-0

r (l -jS)X(k)XT (k)J B (k- 1)

[(1—X(i)XT (i)+(l-/9)X(k)XT (k)]

— /9)X(k)〉〈T (k)] B(k- l)f(l -仞]
p

E 伊서x(Dxt (i)l 
j =0

1 k-i .
—*[(1—£)S ”-小(侦"B(k- 1) 

p 1-0

[(1—g)X(k)X"k)]

—*[(1  -g)X(k)X「(k)]B(k—1) [(1—g)X(k)XT (k)] 

p

+ j(l—£)y(k)X(k)XMk) (B5)

Substitution (27) in (B5) and a rearrangement 

results in the recursive relationship for B(k) as

B〔k，…i \ ，K 史糸,(
P

B(k 1) [I-- (1- /9)X(k)XT (k)RM (k)J

1 . .
+ 如一0)y (k) 0 (k)X(k) XT (k) Rxi (k) (B6) 
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where I denotes the Nx Nidentity matrix.

APPENDIX C 
RECURSIVE COMPUTATION OF 

INVERSE AUTOCORRELATION MATRIX

From (18), it follows that

島(k)= ( 1 -/?) E 阡' X(i)XT (i)
i =o

+ (l-/9)X(k)XT (k) (Cl)

(k— 1) + (1—Q)X(k) (k) (C2)

To compute Rxi (k)we can use the matrix inverse 

lemma [16] which says that if A and B are 

nonsingular square matrices such that

A=B + CD and 1 +DB-1 C ¥0,

1

1+DB-1 C~
AT=B-'_ B'1 CDB~l

(C3)

Applying the matrix inverse lemma to (C2) 

with Rxx (k), fiRxx (k-1), (IM)X(k) and XT (k) 

being matrices A, B, C and D, respectively, 

results in the recursive relationship

* 1 ，、
1) m丄-「느但脂

(k-l)X(k)XT (k) Rxi (k- 1) 

where

d(k)= 1 +-二크纟。(k) Rxi (k一 

p
1 ) X(k)

(C4)
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