A STABILITY IN TOPOLOGICAL DYNAMICS

Jong-Suh Park

1. Introduction

Theorem. Let \((X, \phi)\) be a flow whose phase space \(X\) is a locally compact metric space. Then a compact invariant subset \(M\) of \(X\) is asymptotically stable if and only if there exists a continuous nonnegative real valued function \(f\) defined on an invariant neighborhood \(U\) of \(M\) such that \(f\) vanishes exactly on \(M\), and that \(f(\phi t x) = e^{-t} f(x)\) for all points \(x\) of \(U\) and real numbers \(t\) [1].

In this paper we introduce the concept of a \(c\)-first countable space which is a more general concept than that of a metric space, and extend the above theorem to the case that the phase space \(X\) is \(c\)-first countable and locally compact. All spaces are assumed to be Hausdorff.

2. \(C\)-first countable spaces.

Definition. A space \(X\) is said to be \(c\)-first countable if for each compact subset \(K\) of \(X\) the quotient space \(X/K\) is first countable.

Let \(X\) be a \(c\)-first countable space. Given any compact subset \(K\) of \(X\), there exists a family \(\mathcal{U}\) consisting of countably many neighborhoods of \(K\) such that every neighborhood of \(K\) contains some member of \(\mathcal{U}\). Such a family \(\mathcal{U}\) will be called a countable neighborhood base of \(K\).

Theorem 2.1 Every second countable space is \(c\)-first countable.

Proof. Let \(X\) be a second countable space. There exists a countable basis \(\mathcal{B}\) for \(X\). Given any compact subset \(K\) of \(X\), let \(\mathcal{U}\) be the family of all neighborhoods of \(K\) which are finite unions of members of \(\mathcal{B}\). Then \(\mathcal{U}\) is a countable neighborhood base of \(K\). Thus \(X\) is \(c\)-first countable.
The converse of the above theorem is not true as shown by uncountable discrete spaces. Clearly, every c–first countable space is first countable but its converse does not hold.

Example 2.1. Let $X_0 = \{(x, 0) : x \in \mathbb{R}\}$ and $X_1 = \{(x, 1) : x \in \mathbb{R}\}$ be two subsets of the plane \mathbb{R}^2. We take a basis \mathcal{B} for the topology on the set $X = X_0 \cup X_1$ as follow:

$$\mathcal{B} = \{(x, 1) : x \in \mathbb{R}\} \cup \{B(x, r) : x \in \mathbb{R}, r > 0\}$$

where $B(x, r) = \{(y, 0) : |x-y| < r\} \cup \{(y, 1) : 0 < |x-y| < r\}$. It is clear that X is first countable. We claim that X is not c–first countable. Let us choose a compact subset $K = \{(x, 0) : x \in I\}$ of X where I is the unit interval. For each neighborhood U of K, let $I(U) = \{x \in I : (x, 1) \notin U\}$. Suppose that $I(U)$ is infinite for some neighborhood U of K. $I(U)$ has a cluster point, say y, in I. Since $(y, 0) \in K \subset U$, there exists a number $r > 0$ such that $B(y, r) \subset U$. Since y is a cluster point of $I(U)$, there is a number $z \in I(U)$ such that $0 < |y-z| < r$. Since $(z, 1) \in B(y, r) \subset U$, we have a contradiction. Thus $I(U)$ is finite for all neighborhoods U of K. Let U_1, U_2, U_3, \ldots be neighborhoods of K. Since $I(U_n)$ is finite for all n, $A = \bigcup_{n=1}^{\infty} I(U_n)$ is countable. Thus there is a number $w \in I - A$. Let $V = X_0 \cup \{(x, 1) : x \neq w\}$. Then V is a neighborhood of K and $U_n \subset V$ for all n. Thus there is no countable neighborhood base of K. Hence X is not c–first countable.

Theorem 2.2. Every metric space is c–first countable.

Proof. Let (X, d) be a metric space. Given any compact subset K of X, it is easy to show that the family $\{B(K, \frac{1}{n}) : n = 1, 2, 3, \ldots\}$ is a countable neighborhood base of K, where $B(K, \frac{1}{n}) = \{x \in X : d(K, x) < \frac{1}{n}\}$. Thus X is c–first countable.

The converse of the above theorem is not true. The following example shows that there exists a c–first countable and locally compact space which is not a metric space.

Example 2.2. For each irrational x, we choose a sequence (x_n) of
rational sequence topology \(\overline{\sigma} \) on \(\mathbb{R} \) is then defined by declaring each rational open, and selecting the sets \(U_n(x) = \{x_i : i=n, n+1, n+2, \ldots \} \cup \{x\} \) as a basis for the irrational point \(x \). The space \((\mathbb{R}, \overline{\sigma}) \) is Hausdorff, locally compact and not metrizable [2]. We will show that \((\mathbb{R}, \overline{\sigma}) \) is \(c \)-first countable. Let \(K \) be a compact subset of \(\mathbb{R} \). If \(K-Q \) is infinite, where \(Q \) is the set of rationals, then the open cover \(\{U_i(x) : x \in K-Q \} \cup \{Q\} \) of \(K \) has no finite subcover, this is a contradiction. Thus \(K-Q \) is finite, say \(K-Q = \{x^1, x^2, \ldots, x^m\} \). Let \(U \) be a neighborhood of \(K \). For each \(i=1, 2, \ldots, m \), since \(x^i \in K-Q \subset U-Q \), there is an \(n_i \) such that \(U_{n_i}(x^i) \subset U \).

Let \(N=\max n_i \). Then \(\bigcup_{i=1}^{n} U_{n_i}(x^i) \cup (K \cap Q) \subset U \). Thus \(\left\{ \bigcup_{i=1}^{n} U_{n_i}(x^i) \cup (K \cap Q) : n=1, 2, \ldots \right\} \) is a countable neighborhood base of \(K \). Hence \((\mathbb{R}, \overline{\sigma}) \) is \(c \)-first countable.

Lemma 2.1. Let \(X \) be a \(c \)-first countable and locally compact space, and let \(K \) be a compact subset of \(X \). For each neighborhood \(U \) of \(K \), there exists a countable neighborhood base \(\{U(r) : r \in D\} \) of \(K \) such that

1. \(U(1) = U \), and that
2. if \(r_1 < r_2 \), then \(U(r_1) \subset U(r_2) \)

where \(D \) is the set of all rationals of form \(\frac{k}{2^n}, 0 < \frac{k}{2^n} \leq 1 \).

Proof. Let us show that for each \(r \in D \) we can associate a neighborhood \(U(r) \) of \(K \) satisfying the above conditions (1) and (2). We proceed by induction on exponent of dyadic fractions, letting \(\mathcal{U}_n = \left\{ U\left(\frac{k}{2^n}\right) : k=1, 2, \ldots, 2^n \right\} \). There exists a countable neighborhood base \(\{V_m : m=1, 2, \ldots\} \) of \(K \). We may assume that \(V_1 \supset V_2 \supset \ldots \) and \(V_1 \) compact. There is an \(m_1 \) such that \(V_{m_1} \subset K \). \(\mathcal{U}_1 \) consists of \(U\left(\frac{1}{2}\right) = V_{m_1} \) and \(U(1) = U \). Assume \(\mathcal{U}_{n-1} \) constructed. Note that only \(U\left(\frac{k}{2^n}\right) \) for odd \(k \) requires definition. There is an \(m_n > m_{n-1} \) such that \(\overline{V}_{m_n} \subset U\left(\frac{1}{2^n}\right) \). We define \(U\left(\frac{1}{2^n}\right) = V_{m_n} \). For each odd \(k \neq 1 \), we have from \(\mathcal{U}_{n-1} \) that \(U\left(\frac{k-1}{2^n}\right) \subset U\left(\frac{k+1}{2^n}\right) \), so we define \(U\left(\frac{k}{2^n}\right) \) to be an open set \(V \) satisfying
\begin{equation*}
U\left(\frac{k-1}{2^n}\right) \subset V \subset \bar{V} \subset U\left(\frac{k+1}{2^n}\right)
\end{equation*}

and \(\bar{V}\) compact. This completes inductive step. Given any neighborhood \(W\) of \(K\), there is an \(n\) such that \(V_{m_n} = U\left(\frac{1}{2^n}\right) \subset W\). Thus the family \(\{U(r) : r \in D\}\) is a countable neighborhood base of \(K\).

Theorem 2.3. Let \(X\) be a locally compact space. Then \(X\) is \(c\)-first countable if and only if for each compact subset \(K\) of \(X\) there exists a continuous nonnegative real valued function \(f\) defined on \(X\) such that \(f\) vanishes exactly on \(K\).

Proof. \((\Rightarrow)\) By Lemma 2.1, there exists a countable neighborhood base \(\{U(r) : r \in D\}\) such that \(U(1) = X\), and that if \(r_1 < r_2\) then \(\overline{U(r_1)} \subset U(r_2)\). Define a function \(f : X \to \mathbb{R}^+\) by \(f(x) = \inf\{r \in D : x \in U(r)\}\). Clearly, \(0 \leq f \leq 1\). It is easy to show that \(f\) vanishes exactly on \(K\). Given any \(\varepsilon > 0\), we can choose an \(r \in D\) such that \(r < \varepsilon\). Since \(f(U(r)) \subset (-\varepsilon, \varepsilon)\), \(f\) is continuous on \(K\). We will show that \(f\) is continuous at \(x \in X - K\). There are two possibilities:

Case 1. \(f(x) < 1\); Given any \(\varepsilon > 0\), we can choose \(r_1\) and \(r_2\) in \(D\) such that \(f(x) - \varepsilon < r_1 < f(x) < r_2 < f(x) + \varepsilon\). Then \(U(r_2) - \overline{U(r_1)}\) is a neighborhood of \(x\) and \(f(U(r_2) - \overline{U(r_1)}) \subset (f(x) - \varepsilon, f(x) + \varepsilon)\).

Case 2. \(f(x) = 1\); Given any \(\varepsilon > 0\), there exists a number \(r \in D\) such that \(1 - \varepsilon < r < 1\). Then \(X - \overline{U(r)}\) is a neighborhood of \(x\) and \(f(X - \overline{U(x)}) \subset (1 - \varepsilon, 1 + \varepsilon)\). Thus \(f\) is continuous.

\((\Leftarrow)\) There exists a neighborhood \(U\) of \(K\) such that \(\overline{U}\) is compact. For each positive integer \(n\), the set \(U_n = f^{-1}\left[0, \frac{1}{n}\right] \cap U\) is a neighborhood of \(K\). Given any neighborhood \(V\) of \(K\), suppose that \(U_n \not\subset V\) for all \(n\). For each \(n\), we can choose an \(x_n \in U_n - V\). Since \(\overline{U}\) is compact, the sequence \((x_n)\) in \(\overline{U}\) has a convergent subsequence. Let \(x_n \to x\). It is clear that \(x \in X - V\) and \(f(x_n) \to f(x)\). Since \(f(x_n) < \frac{1}{n}\) for all \(n\), \(f(x_n) \to 0\). Thus \(f(x) = 0\) and so \(x \in K\). This is a contradiction. So \(U_n \subset V\) for some \(n\). Hence the family \(\{U_n : n = 1, 2, \ldots\}\) is a countable neighborhood base of \(K\).
3. Asymptotic stability

Throughout this section (X, φ) is a flow whose phase space X is σ-first countable and locally compact.

For a point x of X, the positive (negative) limit set $L^+(x)$ ($L^-(x)$) of x defined by

$$L^+(x) = \bigcap_{t \in \mathbb{R}^+} x[t, \infty) \quad (L^-(x) = \bigcap_{t \in \mathbb{R}^-} x(-\infty, t])$$

where \mathbb{R}^+ (\mathbb{R}^-) denotes the set of nonnegative (nonpositive) real numbers. It is easy to show that $y \in L^+(x)$ ($L^-(x)$) if and only if there is a sequence (t_n) in \mathbb{R}^+ (\mathbb{R}^-) such that $t_n \to \infty$ ($-\infty$) and $x_{t_n} \to y$. Obviously, the set $L^+(x)$ ($L^-(x)$) is invariant. Furthermore, the set $L^+(x)$ ($L^-(x)$) is nonempty whenever $\overline{x \mathbb{R}^+}$ ($\overline{x \mathbb{R}^-}$) is compact. A subset M of X is said to be stable if for each neighborhood U of M, there exists a neighborhood V of M such that $V \mathbb{R}^+ \subset U$. It is clear that a stable set is positively invariant. For a subset M of X, the region of attraction $A(M)$ is defined by $A(M) = \{x \in X : L^+(x) \neq \emptyset \subset M\}$. Note that $A(M)$ is invariant. A subset M of X is called an attractor if the set $A(M)$ is a neighborhood of M. When a subset M of X is stable and an attractor, the set M is said to be asymptotically stable.

Lemma 3.1 Let M be a compact subset of X. Then $x \in A(M)$ if and only if for each neighborhood U of M there exists a $t \in \mathbb{R}^+$ such that $x[t, \infty) \subset U$.

Proof. (\Rightarrow) Let $x \in A(M)$ and U a neighborhood of M. We can choose a neighborhood V of M such that $\overline{V} \subset U$ and \overline{V} compact. Suppose that for each $t \in \mathbb{R}^+$ there is an $s \geq t$ such that $x_s \notin U$. Then there is an $r_1 \geq 1$ such that $x_{r_1} \in X - U \subset X - \overline{V}$. Since $x \in A(M)$, there exists a $t_1 > r_1$ such that $x_{t_1} \in V$. We can choose an s_1 such that $r_1 < s_1 < t_1$ and $x_{s_1} \in \partial V$ where ∂V is the boundary of V. By the same way we can choose r_2, t_2 and s_2 such that

$$r_2 \geq \max(2, t_1), \quad x_{r_2} \in X - \overline{V}, \quad x_{t_2} \in V, \quad r_2 < s_2 < t_2 \quad \text{and} \quad x_{s_2} \in \partial V,$$

and so on. Thus we obtain a sequence (s_n) in \mathbb{R}^+ such that $s_n \to \infty$ and $x_{s_n} \in \partial V$ for all n. Since ∂V is compact, the sequence (x_{s_n}) has a convergent subsequence. Let $x_{s_n} \to z \in \partial V$. Since $z \in L^+(x) \subset M \subset V$, we have a contradiction. Thus there is a $t \in \mathbb{R}^+$ such that $x[t, \infty) \subset U$.

There exists a neighborhood U of M such that \overline{U} is compact. We can choose a $t \in \mathbb{R}^+$ such that $x[t, \infty) \subset U$. Since
$$\overline{xR^+} = x[0, t] \cup \overline{x[t, \infty)} \subset x[0, t] \cup \overline{U},$$
xR^+ is compact. Thus $L^+(x) \neq \phi$. To show $L^+(x) \subset M$, suppose that there exists an $y \in L^+(x) - M$. There are neighborhoods V of M and W of y such $V \cap W = \phi$. We can choose a $t \in \mathbb{R}^+$ such that $x[t, \infty) \subset V$. Since $W \cap x[t, \infty) = \phi$, $y \notin \overline{x[t, \infty)}$ and so $y \notin L^+(x)$. This is a contradiction. Thus $L^+(x) \subset M$. Hence $x \in A(M)$.

Lemma 3.2 Let a compact subset M of X be asymptotically stable and U a neighborhood of M. For any point x of $A(M)$, if $xR^+ \subset U$, then there exists a neighborhood V of x such that $VR^+ \subset U$.

Proof. Since M is stable, there is a neighborhood U_1 of M such that $U_1 \cap U^+ \subset U$. By Lemma 3.1, there is an $s \in \mathbb{R}^+$ such that $x[s, \infty) \subset U_1$. We can choose a neighborhood W_1 of x such that $W_1 \subset U_1$. For each $t \in [0, s]$, since $xt \subset U$, there exist neighborhoods V_t of x and I_t of t such that $V_t \cap I_t \subset U$. There are finitely many $0 \leq t_1, t_2, \ldots, t_n \leq s$ such that $[0, s] \subset \bigcup_{i=1}^{n} I_t$. Let $W_2 = \bigcap_{i=1}^{n} V_t$. Then W_2 is a neighborhood of x. Given any $y \in W_2$ and $t \in [0, s]$, since $t \in I_t$ for some i, $yt \in V_t \cap I_t \subset U$. Thus $W_2 \subset [0, s] \subset U$. Let $V = W_1 \cap W_2$. Then V is a neighborhood of x. From the fact that

$$V[0, s] \subset W_2[0, s] \subset U \quad \text{and} \quad V[s, \infty) \subset W_1[s, \infty) = (W_1s) \cap U \subset U,$$
we have $VR^+ = V[0, s] \cup V[s, \infty) \subset U$.

Lemma 3.3 Let U be a neighborhood of a point x of X. If y is a point of X and $yR^+ \notin U$, then there is a neighborhood V of y such that $zR^+ \notin U$ for all points z of V.

Proof. There is a $t \in \mathbb{R}^+$ such that $yt \notin U$. Since $X - U$ is a neighborhood of yt, there exists a neighborhood V of y such that $Vt \subset X - U$. Then V is a desired neighborhood.

Theorem 3.1 Let M be an asymptotically stable compact subset of X. Then there exists a continuous nonnegative real valued function f defined on $A(M)$ such that f vanishes exactly on M, and that $f(xt) < f(x)$ for all points x of $A(M) - M$ and all positive real numbers t.

Proof. Let D be the set of all rationals s of form $\frac{k}{2^n}$, $0 < \frac{k}{2^n} \leq 1$.
By Lemma 2.1, there exists a countable neighborhood base \(\{U(r) : r \in D\} \) of \(M \) satisfying

1. \(U(1) = A(M) \) and
2. if \(r_1 < r_2 \) then \(U(r_1) \subset U(r_2) \).

Define a function \(g : A(M) \to \mathbb{R}^+ \) by \(g(x) = \inf \{ r \in D : x^+ \subset U(r) \} \).

Clearly, \(0 \leq g \leq 1 \). Let \(x \in M \). For any \(r \in D \), since \(x^+ \subset M \subset U(r) \), \(g(x) \leq r \). Thus \(g(x) = 0 \). Let \(x \in A(M) - M \). We can choose an \(r \in D \) such that \(x \not\in U(r) \). Then \(g(x) \geq r > 0 \). Thus \(g \) vanishes exactly on \(M \). Let us show that \(g \) is continuous on \(M \). Given any \(\varepsilon > 0 \), there exists a number \(r \in D \) such that \(r < \varepsilon \). Since \(M \) is stable, there exists a neighborhood \(V \) of \(M \) such that \(V^+ \subset U(r) \). Since \(g(V) \subset (-\varepsilon, \varepsilon) \), \(g \) is continuous on \(M \). We further show that \(g \) is continuous at each point \(x \) in \(A(M) - M \). There are two possibilities:

1. In case \(g(x) = 1 \), given any \(\varepsilon > 0 \), we can choose an \(r \in D \) such that \(1 - \varepsilon < r < 1 \). Since \(x^+ \nsubseteq U(r) \), by Lemma 3.3, there is a neighborhood \(V \) of \(x \) such that \(y^+ \nsubseteq U(r) \) for all \(y \in V \). Then \(g(V) \subset (1-\varepsilon, 1+\varepsilon) \).

2. In case \(g(x) < 1 \), given any \(\varepsilon > 0 \), we choose \(r_1, r_2 \in D \) such that \(g(x) - \varepsilon < r_1 < g(x) < r_2 < g(x) + \varepsilon \). Since \(x^+ \subset U(r_2) \), there is a neighborhood \(V_1 \) of \(x \) such that \(V_1^+ \subset U(r_2) \) by Lemma 3.2. By Lemma 3.3, there exists a neighborhood \(V_2 \) of \(x \) such that \(y^+ \subset U(r_1) \) for all \(y \in V_2 \). Let \(V = V_1 \cap V_2 \). Then \(V \) is a neighborhood of \(x \) and \(g(V) \subset (g(x) - \varepsilon, g(x) + \varepsilon) \). Thus \(g \) is continuous. We claim that \(g(xt) \leq g(x) \) for all \(x \in A(M) \) and \(t \in \mathbb{R}^+ \). Suppose that \(g(xt) > g(x) \) for some \(x \in A(M) \) and \(t \in \mathbb{R}^+ \). We can choose an \(r \in D \) such that \(g(x) < r < g(xt) \). Since \((xt)^+ = x[t, \infty) \subset x^+ \subset U(r) \), \(g(xt) \leq r \). This is a contradiction. Thus \(g(xt) \leq g(x) \) for all \(x \in A(M) \) and \(t \in \mathbb{R}^+ \).

Define a function \(f : A(M) \to \mathbb{R}^+ \) by

\[
 f(x) = \int_0^\infty e^{-s} g(xs) \, ds.
\]

Clearly, \(f \) is continuous and vanishes exactly on \(M \). It remains to prove that \(f(xt) < f(x) \) for all \(x \in A(M) - M \) and \(t > 0 \). Since \(g((xt)s) = g((xs)t) \leq g(xs) \) for all \(s \in \mathbb{R}^+ \), \(f(xt) \leq f(x) \). To rule out \(f(xt) = f(x) \), observe that in this case we must \(g(x(t+s)) = g((xs)t) = g(xs) \) for all \(s \in \mathbb{R}^+ \). In particular, letting \(s = 0, t, 2t, ... \), we get \(g(x(n)) = g(x) \), \(n = 1, 2, ... \). Given any \(r \in D \), since \(x \in A(M) \), by Lemma 3.1, there exists an \(s \in \mathbb{R}^+ \) such that \(x[s, \infty) \subset U(r) \). Since \(nt \to \infty \) as \(n \to \infty \), \(mt \to \infty \) as \(m \to \infty \).
\[(x(\omega t)) R^+ = x[\omega t, \infty) \subset x[s, \infty) \subset U(r), \]

\[g(x) = g(x(\omega t)) \leq r. \] Thus \(g(x) = 0. \) But as \(x \in A(M) - M, \) we must \(g(x) > 0, \) a contradiction. We have thus proved that \(f(\omega t) < f(x). \) The theorem is proved.

Theorem 3.2 Let \(M \) be an asymptotically stable compact invariant subset of \(X. \) Then there exists a continuous function \(f : A(M) \to R^+ \) such that \(f \) vanishes exactly on \(M, \) and that \(f(\omega t) = e^{-tf(x)} \) for all \(x \in A(M) \) and all \(t \in R. \)

Proof. By Theorem 3.1, there exists a continuous function \(g : A(M) \to R^+ \) such that \(g \) vanishes exactly on \(M, \) and that \(g(\omega t) < g(x) \) for all \(x \in A(M) - M \) and all \(t > 0. \) Since \(A(M) \) is a neighborhood of \(M, \) we can choose a neighborhood \(U \) of \(M \) such that \(U \subset A(M) \) and \(U \) is compact. Set \(a = \text{min } g(\partial U). \) Clearly, \(a > 0. \) Let \(V = g^{-1}(0, a). \) Then \(V \) is a neighborhood of \(M. \) Suppose that \(\overline{V} \cap U \) and choose a point \(x \in \overline{V} - U. \) Since \(x \in V \subset g^{-1}(0, a) \subset A(M), \) there exists a number \(s > 0 \) such that \(x[s, \infty) \subset U \) by Lemma 3.1. Thus we can choose a \(t > 0 \) such that \(x \in \partial U. \) Since \(a \leq g(\omega t) < g(x) \leq a, \) we have a contradiction. This shows that \(\overline{V} \subset \partial U. \) We claim that \(\partial V \cap (\partial V) t = \emptyset \) for all \(t > 0. \) Suppose that \(\partial V \cap (\partial V) t \neq \emptyset \) for some \(t > 0. \) Then there exists an \(x \in \partial V \) such that \(x \in \partial V. \) Since \(\partial V \subset g^{-1}(a), \) \(a = g(\omega t) < g(x) = a. \) This is a contradiction. Thus \(\partial V \cap (\partial V) t = \emptyset \) for all \(t > 0. \) We will show that for every \(x \in A(M) - M, \) there is unique \(t \in R \) such that \(x \in \partial V. \) There are three possibilities:

1. In case \(x \notin \overline{V}, \) by Lemma 3.1, there is an \(s > 0 \) such that \(x[s, \infty) \subset V. \) Thus we can choose a \(t > 0 \) such that \(x \in \partial V. \)

2. In case \(x \in \partial V, \) \(x = x \in \partial V. \)

3. In case \(x \in V, \) assume that \(x \in V. \) Since \(\overline{x R} \subset \overline{V} \) is compact, \(L^-(x) \neq \emptyset. \) If \(L^-(x) \cap M = \emptyset, \) then we can choose an \(y \in L^-(x) \cap M. \) There exists a sequence \((t_n) \in R^+ \) such that \(t_n \to 0 \) and \(x \in V. \) Since \(g(x) \leq g(x(t_n)) \) for all \(n, \) \(g(x) \leq g(y) = 0, \) this is a contradiction. Thus \(L^-(x) \cap M = \emptyset. \) Choose a point \(x \in L^-(x). \) Since \(L^+(x) \subset \overline{x R} \subset L^-(x), \) \(L^-(x) \cap M = \emptyset. \) But \(L^+(x) \) is nonempty and contained in \(M \) because of \(x \in L^-(x) \subset \overline{x R} \subset \overline{V} \subset A(M). \) This is a contradiction. Thus \(x R \not\subset V. \) Hence we can choose a \(t \in R \) such that \(x \in \partial V. \) The uniqueness of such \(t \) can be obtained from the fact that \(\partial V \cap (\partial V) t = \emptyset \) for all \(t > 0. \)
Define a function \(m : A(M) - M \rightarrow \mathbb{R} \) by \(x m (x) \in \partial V \). Let \(x \in A(M) - M \). Given any \(t \in \mathbb{R} \), since \((x t) (m(x) - t) = x m (x) \in \partial V \), \(m(x t) = m(x) - t \). Thus \(m(x t) \rightarrow \pm \infty \) as \(t \rightarrow \mp \infty \). We will show that \(m \) is continuous. Given any \(x \in A(M) - M \) and \(\varepsilon > 0 \), since \(x (m(x) + \varepsilon) \in V \), \(W_1 = V (-m(x) - \varepsilon) \) is a neighborhood of \(x \). For all \(y \in W_1 \), \(y (m(x) + \varepsilon) \in V \) implies \(m(y) < m(x) + \varepsilon \). Since \(x (m(x) - \varepsilon) \in X - \bar{V} \), \(W_2 = (X - \bar{V}) (-m(x) + \varepsilon) \) is a neighborhood of \(x \). For all \(y \in W_2 \), \(y (m(x) - \varepsilon) \in X - \bar{V} \) implies \(m(x) - \varepsilon < m(y) \). Let \(W = W_1 \cap W_2 \). Then \(W \) is a neighborhood of \(x \) and \(m(x) - \varepsilon < m(y) < m(x) + \varepsilon \) for all \(y \in W \). Thus \(m \) is continuous.

Define a function \(f : A(M) \rightarrow \mathbb{R}^+ \) by
\[
 f(x) = \begin{cases}
 e^{m(x)} & \text{if } x \in A(M) - M \\
 0 & \text{if } x \in M.
 \end{cases}
\]

We will show that \(f \) is continuous. It is sufficient to show that \(f \) is continuous on \(M \). Suppose that there exists an \(\varepsilon > 0 \) such that \(f(U) \subset [0, \varepsilon) \) for all neighborhoods \(U \) of \(M \). There is a \(T \in \mathbb{R}^- \) such that \(e^T \leq \varepsilon \). For each neighborhood \(U \) of \(M \), \(f(U) \subset [0, e^T) \) and so \(m(U - M) \subset (-\infty, T) \). Since \(X \) is \(c \)–first countable, there is a countable neighborhood base \(\{ V_n : n = 1, 2, \ldots \} \) of \(M \). We may assume that \(V \supset V_1 \supset V_2 \supset \ldots \). For each \(n \), since \(m(V_n - M) \subset (-\infty, T) \), there is an \(x_n \in V_n - M \) such that \(T \leq m(x_n) \leq 0 \). There is a \(y \in M \) such that \(x_n \rightarrow y \). \((m(x_n)) \) is a sequence in \([T, 0] \). Since \([T, 0] \) is compact, \((m(x_n)) \) has a convergent subsequence. Let \(m(x_n) \rightarrow t \in [T, 0] \). Then \(x_n m(x_n) \rightarrow yt \in M \) and \(yt \in \partial V \). This is a contradiction. Thus for each \(\varepsilon > 0 \), there is a neighborhood \(U \) of \(M \) such that \(f(U) \subset [0, \varepsilon) \). Hence \(f \) is continuous on \(M \). Clearly, \(f \) vanishes exactly on \(M \). For any \(x \in A(M) \) and \(t \in \mathbb{R} \),
\[
 f(x t) = e^{m(x t)} = e^{m(x) - t} = e^{-t} e^{m(x)} = e^{-t} f(x).
\]

Thus the theorem is proved.

Lemma 3.4 Let \(M \) be a compact subset of \(X \), \(U \) an invariant neighborhood of \(M \) and \(f : U \rightarrow \mathbb{R}^+ \) a continuous function such that \(f \) vanishes exactly on \(M \) and \(f(x t) = e^{-t} f(x) \) for all \(x \in U \) and \(t \in \mathbb{R} \). If \(K \) is a compact positively invariant subset of \(U \) then \(K \) is contained in \(A(M) \).

Proof. Let \(x \in K \). Since \(x \mathbb{R}^+ \subset K \) is compact, \(L^+ (x) \neq \emptyset \). Let \(y \in L^+ (x) \). Take a \(t > 0 \). Since \(yt \in L^+ (x) \), there are sequence \((t_n) \), \((s_n) \) in \(\mathbb{R}^+ \) such that \(t_n \rightarrow \infty \), \(s_n \rightarrow \infty \), \(xt_n \rightarrow y \) and \(xs_n \rightarrow yt \). We may assume that \(t_n \geq s_n \) for all \(n \). Since \(f(x t_n) \leq f(xs_n) \), \(f(y) \leq f(yt) \). Since \(f(yt) \leq f(y) \),
f(y) = f(yt) = e^{-tf(y)}. Thus f(y) = 0 and so y \in M. Hence L^+(x) \subseteq M. Therefore x \in A(M).

Theorem 3.3 Let M be a compact invariant subset of X. If there exists a continuous nonnegative real valued function f defined on an invariant neighborhood U of M such that f vanishes exactly on M, and that f(xt) = e^{-tf(x)} for all points x of U and all real numbers t, then M is asymptotically stable and U = A(M).

Proof. Given any neighborhood V of M, we can choose a neighborhood W_1 of M such that \overline{W_1} \subseteq U \cap V and \overline{W_1} is compact. Let a = \min f(\partial W_1). Then a > 0. Let W = f^{-1}[0, a). Then W \subseteq W_1 and W is a positively invariant neighborhood of M. Thus M is stable. We can choose a neighborhood V of M such that \overline{V} \subseteq U and \overline{V} is compact. Let a = \min f(\partial V). Then a > 0. Take a number r such that 0 < r < a, and let W = f^{-1}[0, r]. Then W \subseteq V and W is compact positively invariant. By Lemma 3.4, W \subseteq A(M). Given any x \in U, if x \in W, then x \in A(M), and if x \in W, then f(x) > r. There is a t > 0 such that f(xt) = e^{-tf(x)} = r. Since K = xR^+ \cup W = x[0, t] \cup W is a compact positively invariant subset of U, by Lemma 3.4, K \subseteq A(M) and so x \in A(M). Thus U \subseteq A(M). Given any x \in A(M), since U is a neighborhood of M, by Lemma 3.1, there is a t \in R^+ such that xt \in U. Since U is invariant, x = (xt)(-t) \in U. Hence A(M) = U and so A(M) is a neighborhood of M. Therefore M is asymptotically stable.

References

Chungnam National University
Daejeon 300–31, Korea