ON THE NUMBER OF PRIMES BETWEEN TWO
FUNCTION-VALUES
f(n) AND f(n+1)

YEU–HUA TOO

1. Introduction

Let \(\pi(x) \) be the number of primes \(p \) not exceeding \(x \), then the well-known Bertrand's postulate can be written as

\[
\pi(2n) - \pi(n) \geq 1 \quad \text{for all } n \in \mathbb{N} = \{1, 2, 3, \ldots \}.
\]

This is first proved by Chebychev [1]. Actually, it can be shown that for any fixed real number \(r \in (7/12, 1) \)

\[
(1) \quad \pi(n + n^r) - \pi(n) \sim \frac{n^r}{\ln n} \quad \text{as } n \to \infty.
\]

The purpose of this paper is to investigate the number of primes between two function-values \(f(n) \) and \(f(n+1) \), or more formally, to investigate

\[
\Delta_f(n) = f(n+1) - f(n), \quad n \in \mathbb{N}, \quad n \geq a,
\]

where \(f \) is a positive function defined on an interval \([a, \infty)\). Recently, we obtain Theorem A below via the following heuristic result:

\[
(2) \quad p_{n+1} - p_n = O((\ln p_n)^\beta) \quad \text{(as } n \to \infty) \quad \text{for some } \beta \geq 2,
\]

in which \(p_n \) denotes the \(n \)th prime. (Too [8, Theorem 2].)

THEOREM A. Let \(r > 1 \) and the function \(f_r(x) = x^r, x \geq 1 \). Then, under the hypothesis (2), there exists an \(n_0(r) \) such that

\[
(3) \quad \Delta_{f_r}(n) \geq 1 \quad \text{for all } n \geq n_0(r).
\]

For polynomial functions

\[
(4) \quad f_k(x) = x^k, \quad x \geq 1, \quad \text{where } k = 2, 3, \ldots,
\]

Hu and Lin [3] obtained the following asymptotic behavior of \(\Delta_{f_k} \) by an elementary proof.

THEOREM B. Let \(f_k \) be a function defined in (4). Then, if the ratio

\[
\Delta_{f_k}(n) / (n^{k-1}/\ln n)
\]

--- 199 ---
tends to a limit as $n \to \infty$, the limit must be 1.

In what follows, we are concerned with the larger class of functions (in comparison to (4))

\[(5) \quad f_{a, \beta}(x) = x^a \ln^\beta x, \quad x \geq 1,\]

where the exponents α and β satisfy either (i) $\alpha = 1, \beta \geq 1$ or (ii) $\alpha > 1, \beta \in (-\infty, \infty)$. For the case $\alpha > \frac{12}{5}$, we find the rate of convergence of $\Delta f_{a, \beta}$ (Theorem 1), a more precise estimate than (3); for the rest (in fact, for both cases (i) and (ii)), we obtain a result similar to Theorem B by an elementary proof (Theorem 2).

Theorem 1. Let $\alpha > \frac{12}{5}$ and $\beta \in (-\infty, \infty)$, then

\[(6) \quad \Delta f_{a, \beta}(n) \sim n^{a-1} \ln^\beta - 1 n \text{ as } n \to \infty.\]

Theorem 2. Assume (i) $\alpha = 1, \beta \geq 1$ or (ii)' $1 < \alpha \leq \frac{12}{5}, \beta \in (-\infty, \infty)$. Then, for $f = f_{a, \beta}$ if the ratio

\[(7) \quad \frac{\Delta f(n)}{(f'(n)/\ln f(n))}\]

tends to a limit as $n \to \infty$, the limit must be 1.

Finally, for general functions f, we have two interesting results concerning Δf (Theorems 3 and 4). The identities (9) and (11) hold for any function $f_{a, \beta}$ defined in (5) since it satisfies all the conditions of Theorems 3 and 4 with $r \geq 1$ and a sufficiently large (see the proof of Theorem 2). Hence Theorem 4 is an extension of Lemma 1 of Hu and Lin [3] who considered the special case $r = 1$ and the polynomial functions f_k defined in (4).

Theorem 3. Let f be a positive function defined on an interval $[a, \infty)$ such that f' is positive and nondecreasing. Assume, in addition, that

\[(8) \quad \sum_{i \in [a]} \frac{(f'(i+1))^2}{f(i)f(i+1)} = o (\ln \ln f(n+1)) \text{ as } n \to \infty.\]

Then

\[(9) \quad \lim_{n \to \infty} \frac{1}{\ln \ln f(n+1)} \sum_{i \in [a]} \frac{\Delta f(i)}{f(i)} = 1.\]

Theorem 4. Let f be a positive function defined on an interval $[a, \infty)$ such that f' is positive and nondecreasing. Assume further that for a real
On the number of primes between two function-values $f(n)$ and $f(n+1)$

number $r \geq 1$

\begin{equation}
\sum_{i \in \{x\}} \frac{(f'(i+1))^2 \ln f(i)}{f(i) f(i+1)} = o \left(\ln^2 f(n+1) \right) \quad \text{as } n \to \infty.
\end{equation}

Then

\begin{equation}
\lim_{n \to \infty} \frac{r}{\ln^2 f(n+1)} \sum_{i \in \{x\}} \frac{\Lambda_f(i) \ln f(i)}{f(i)} = 1.
\end{equation}

2. Lemmas

To prove the theorems above, we need the next two lemmas. Lemma 1 is due to Huxley [4]. Lemma 2 is interesting in its own right since it is an extension of the well-known Mertens' first theorem written as

\begin{equation}
\sum_{p \leq x} \ln p = \ln x + O(1) \quad \text{as } x \to \infty.
\end{equation}

(see Mertens [6] or Hardy and Wright [2] or Yaglom and Yaglom [9, p.40]).

Lemma 1. Let $\varepsilon > 0$, then as $x \to \infty$

\begin{equation}
\pi(x) - \pi(x-y) \sim \frac{y}{\ln x} \quad \text{if } y \in \left[\frac{x^{1+\varepsilon}}{2}, \frac{x}{2}\right].
\end{equation}

Lemma 2. Let $r \geq 1$ be a real number. Then

\begin{equation}
\sum_{p \leq x} \frac{\ln^r p}{p} = \frac{1}{r} \ln^r x + O(\ln^{r-1} x) \quad \text{as } x \to \infty.
\end{equation}

Proof. It suffices to prove that (14) holds for $r > 1$ since (14) is exactly (12) when $r=1$. Define

$$M_r(x) = \sum_{p \leq x} \frac{\ln^r p}{p}, \quad x > 1,$$

and set

\begin{equation}
M_1(x) = \ln x + R(x),
\end{equation}

so that, by (12),

\begin{equation}
R(x) = O(1) \quad \text{as } x \to \infty.
\end{equation}

Then

\begin{equation}
M_r(x) = \sum_{2 \leq n \leq x} (\ln^{r-1} n) (M_1(n) - M_1(n-1)).
\end{equation}

Inserting (15) into (17) yields

\begin{equation}
M_r(x) = \sum_{2 \leq n \leq x} (\ln^{r-1} n) \ln \frac{n}{n-1}
\end{equation}
We first estimate $S_2(x)$. Summing by parts,

$$S_2(x) = (\ln^{-1}[x]) R([x]) + \sum_{2 \leq n \leq x-1} R(n) \{\ln^{-1}n - \ln^{-1}(n+1)\}.$$

From (16) it follows that as $n \to \infty$

$$R(n) \{\ln^{-1}n - \ln^{-1}(n+1)\} = O(\ln^{-1}n - \ln^{-1}(n+1)),$$

so that as $x \to \infty$,

$$S_2(x) = (\ln^{-1}[x]) R([x]) + O(\ln^{-1}x) = O(\ln^{-1}x).$$

As for $S_1(x)$ in (18), setting $\ln \frac{n}{n-1} = \frac{1}{n} + E(n)$, we have $E(n) = O(n^{-2})$ as $n \to \infty$, hence

$$S_1(x) = \sum_{2 \leq n \leq x} \frac{\ln^{-1}n}{n} + \sum_{2 \leq n \leq x} E(n) \ln^{-1}n$$

$$= \frac{1}{r} \ln x + O(\ln^{-1}x) \quad \text{as} \quad x \to \infty.$$

Combining (19) and (20), we have proved that

$$M_r(x) = S_1(x) + S_2(x)$$

$$= \frac{1}{r} \ln x + O(\ln^{-1}x) \quad \text{as} \quad x \to \infty,$$

which is the desired result.

3. Proofs of theorems

Proof of Theorem 1. For any fixed real numbers $\alpha > \frac{12}{5}$ and β, let us define

$$x_n = f_{\alpha, \beta}(n), \quad y_n = x_{n+1} - x_n, \quad n \in \mathbb{N}.$$

Then, by the mean-value theorem, there exists $\theta_n \in (0, 1)$ such that for sufficiently large n

$$y_n = f_{\alpha, \beta}'(n + \theta_n)$$

$$= \alpha (n + \theta_n) \alpha^{-1} \ln \beta (n + \theta_n) + \beta (n + \theta_n) \alpha^{-1} \ln \beta^{-1} (n + \theta_n)$$

$$= (\alpha \ln (n + \theta_n) + \beta) (n + \theta_n) \alpha^{-1} \ln \beta^{-1} (n + \theta_n)$$

$$\geq \alpha n \alpha^{-1} \ln \beta^{-1} (n + \theta_n) = y_n^*.$$
On the number of primes between two function-values $f(n)$ and $f(n+1)$

Choosing $0<\varepsilon<\frac{5}{12}$, we obtain that for all sufficiently large n
\[\frac{n^{2+\varepsilon}}{2^{0.5}} \leq y_n \leq \frac{1}{2} x_{n+1},\]
and hence, by Lemma 1,
\[\Delta_{f,\beta}(n) \sim \frac{y_n}{\ln x_{n+1}} \quad \text{as } n \to \infty,
\]
or equivalently
\[\Delta_{f,\beta}(n) \sim \frac{f'(x)\beta(n)}{\ln f\alpha\beta(n)} \sim n^{a-1} \ln \beta^{-1} n \quad \text{as } n \to \infty.
\]

Proof of Theorem 2. To prove this theorem, we may apply either Theorem 3 or Theorem 4. It is seen that $f>0$, $f'>0$ and $f''>0$ on $[a, \infty)$ for some sufficiently large integer a. Also, for this f the LHS of (8) is
\[O\left(\sum_{i=a}^{n} i^{-2}\right) = O(1) \quad \text{as } n \to \infty.
\]
Therefore, the function f satisfies all the conditions of Theorem 3 and hence the identity (9). Namely,
\[1 = \lim_{n \to \infty} \frac{1}{\ln f(n+1)} \sum_{i=a}^{n} \frac{1}{i \ln i} \cdot \frac{\Delta_f(i)}{i^{a-1} \ln \beta^{-1} i}.
\]
Now, suppose that the ratio (7) tends to a limit c, say, as $n \to \infty$, namely,
\[\lim_{n \to \infty} \frac{\Delta_f(n) \ln f(n)}{f'(n)} = c,
\]
or equivalently
\[\lim_{n \to \infty} \frac{\Delta_f(n)}{n^{a-1} \ln \beta^{-1}} = c.
\]
Then we want to prove $c=1$. Note that
\[\lim_{n \to \infty} \frac{\sum_{i=a}^{n} \frac{1}{i \ln i}}{\ln \ln f(n+1)} \sim \ln \ln n \sim \ln \ln f(n+1) \quad \text{as } n \to \infty.
\]
Combining (22) and (23) yields
\[\lim_{n \to \infty} \frac{1}{\ln \ln f(n+1)} \sum_{i=a}^{n} \frac{1}{i \ln i} \frac{\Delta_f(i)}{i^{a-1} \ln \beta^{-1} i} = c.
\]
Therefore, $c=1$ by (21) and (24). The proof is complete.

Proof of Theorem 3. For convenience, denote $I_f(i) = (f(i), f(i+1)]$ and assume without loss of generality that a is a positive integer. At first, the monotonicity of f implies that for all $n \geq a$
Secondly, pay attention to the second summation in (25). From Mertens’ second theorem (see, e.g., Yaglom and Yaglom [9, p. 41]) written as

\[\sum_{p \leq x} \frac{1}{p} = \ln \ln x + O(1) \quad \text{as } x \to \infty \]

it follows that

\[\lim_{x \to \infty} \frac{\ln \ln f(n+1)}{x} \sum_{p \in \{\infty, f(n+1)\}} \frac{1}{p} = 1. \]

Finally, in view of (9), (25) and (26) it remains to prove that the difference between two sides of (25) is \(o(\ln \ln f(n+1)) \) as \(n \to \infty \). As expected, this difference is

\[
D = \sum_{i=a}^{n} \frac{A_f(i)}{f(i)f(i+1)}(f(i+1) - f(i))
\]

\[
\leq \sum_{i=a}^{n} \frac{(f(i+1) - f(i))^2}{f(i)f(i+1)}
\]

\[
\leq \sum_{i=a}^{n} \frac{(f'(i+1))^2}{f(i)f(i+1)}
\]

\[= o(\ln \ln f(n+1)) \quad \text{as } n \to \infty, \]

in which the last equality follows from the assumption (8). The proof is complete.

Proof of Theorem 4. By the conditions on \(f \), \(\lim f(n) = \infty \), so that \(f(x) > e^x \) for all \(x \geq b \), where \(b \) is some sufficiently large integer greater than \(a \). The rest of the proof is similar to that of Theorem 3. From the monotonicity of the function \((\ln x)/x \) on \((e^x, \infty)\) it follows that for all \(n \geq b \)

\[
\sum_{i=b}^{n} \sum_{p \in f(i)} \frac{\ln f(i+1)}{f(i+1)} \leq \sum_{i=b}^{n} \sum_{p \in f(i)} \frac{\ln f(p)}{p}
\]

\[
\leq \sum_{i=b}^{n} \sum_{p \in f(i)} \frac{\ln f(i)}{f(i)},
\]

and hence

\[
\sum_{i=b}^{n} \frac{A_f(i) \ln f(i+1)}{f(i+1)}
\]
On the number of primes between two function-values \(f(n) \) and \(f(n+1) \)

\[
\leq \sum_{p \in (f(n), f(n+1))} \frac{\ln p}{p} \leq \sum_{i=b}^{a} \frac{A_f(i) \ln f'(i)}{f(i)}.
\]

Now, applying (14) to the second summation in (27), we obtain that

\[
\lim_{n \to \infty} \frac{r}{\ln f(n+1)} \sum_{p \in (f(n), f(n+1))} \frac{\ln p}{p} = 1.
\]

Finally, in view of (11), (27) and (28) it remains to prove that the difference between two sides of (27) is \(o(\ln f(n+1)) \) as \(n \to \infty \). As expected, this difference is

\[
D^* = \sum_{i=b}^{a} \frac{A_f(i)}{f(i)f(i+1)} \{f(i+1) \ln f(i) - f(i) \ln f(i+1)\}
\]

\[
\leq \sum_{i=b}^{a} \frac{A_f(i)}{f(i)f(i+1)} (f(i+1) - f(i)) \ln f'(i)
\]

\[
\leq \sum_{i=b}^{a} \frac{(f(i+1) - f(i))^2 \ln f(i)}{f(i)f(i+1)}
\]

\[
\leq \sum_{i=b}^{a} \frac{(f'(i+1))^2 \ln f(i)}{f(i)f(i+1)}
\]

\[
= o(\ln f(n+1)) \quad \text{as} \quad n \to \infty,
\]

in which the last equality follows from the assumption (10). The proof is complete.

4. Remarks

Applying Lemma 1 directly we can prove that (1) holds for \(r \in (\frac{7}{12}, 1] \); but the question, whether (1) holds for \(r \in (0, \frac{7}{12}] \), is still open. It will be worth while to mention that if the Riemann hypothesis is true, then (1) holds for \(r \in (\frac{1}{2}, \frac{7}{12}] \) and (6) holds for \(\alpha > 2 \) and \(\beta \in (-\infty, \infty) \) (see Ingham [5] and Titchmarsh [7, p. 77]).

References

15(1972), 164-170.

National Taiwan Normal University
Taipei, Republic of China