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1. Introduction

The best known of some free complexes is the Koszul complex. This remarkable
complex has been generalized by J. A. Eagon and D.G. Northeott ([8]) and by D. A.
Buchsbaum and D.S. Rim([3], [4] and [6]). Here we shall follow very closed the united
treatment of J. A. Eagon and D.G. Northcott (F81]).

The purpose of this paper is to find some properties of the generalized Koszul
complex associated with matrices and to apply to the concept of grade, which has
been developed in the seminar performed during the last semester,

In details the contents of this thesis is described as follows; In section 2 we will
-describe basic properties of the Koszul complex which will be used in to help understand
section 4. In section 3 we deal with the minimal resolution over a noetherian local
ring, and in section 4, which is the main part of this thesis, we will prove several
Theorems. .

If H, 3 (E*)3:0 then there exists a non-zero element ¢ of E such that (A)e=0
{[8]), but the inverse does not hold. Under suitable conditions we will prove that the
inverse holds(Theorem 4.2). Finally, in the noetherian local ring R we will prove in
the Theorem 4.5 that, if gr((A):R)=r--s+1 then the complex R4— R/(A) is a
minimal resolution of R/(A) and the projective dimension of R/(A) is r—s-+1, where
A is an sxXr—matrix(s<r) with entries in the maximal ideal, (A4) is an ideal of R
generated by s-minors of the matrix 4 and £ is an R-module.

As usual R denctes a commutative ring with a non-zero identity element.
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2. Preliminaries

Let x4, %y, -+, %, be elements of R.

A complex K (x4, x4, -+-,%,) is defined as follows;

Kolxy, -y 2,)=R

Kr(x!s"'!xn): @ Ren---z‘, (7":-:1,2,“',?1)
TR e

where Re; --+i, is R-free generated by e;:-.,.

d: Kr(xu ) xn)*—"’K (&g e x4)

is defined by
Airenni) = o= 1) M58 e T i
i=1

where 7, indicates that 7, is omitted there.

Then it is easy to prove that d*=(. Thus

K(-’”h Ty xn): O"“”’Kn(xl! M) xn)"g—'anl(xb Tty xn)*"‘" re—

Ky (T o 50)-2s Ko (H1n o0 %) —0

is a complex which is called a Kosaul complex. For x&=R

-

K(x): e Y Kl(x)——x——-)R~—-—~>0_—..,...
Let

C: ...-—-—-»C‘v—-—)c“q“hma---Cr-———aca-e—-—-bo
be a chain complex of R-modules, then

(CRrK(2))y=Cu@pKo(x) PC 1@ Ky (%)
zcu@cu-b ‘

and we get a complex
CRrK(x): """’*’Cn@cuq””‘"’cu—z@cu—z"“*""““’Cl@co’"’”“‘co"“"o

where the differential 4 is defined by

d(§,7)=(d§+(=1)""xy, dy)



Some Properties of Koszul Complexes

for each (&, n)e&C.PC. 5.
We define the complex C’ by C,’==C,., and C,"==0, we have the exact sequence

[ Sy C— C@RK(x)A* O () ('*) .

of complexes.
Therefore we obtain the long exact sequence

e Hy(C) s Ho(C@eK () Ho (Y () e
Lemma 2.1. Under the above situation xH,(CRpK(x)) =0 for all w>0.
Proof: For (£, N=(CRrK(x)). we assume d(&,%)=0. Thus dyp=0and d& 4 (--1)*?
x7=0. Take (0, (—D*)S(CRK(%)).s: then
a0, (=D =x(&, MNEA(CRK (X)) u 11

This implies that xH,(C®xK(x))=0 for all u>0. @
For an R-module M we shall put
K(x:M):K(xU”'!xn: -A’[);K(xh "‘,Z,J@gﬁr{
and H (#:M)=H (%, 2 M) =H K (%, -, x.: M) for all «>0.

By (%), -+, %,) we mean an ideal of R generated by x,, -, x,.
Proposition 2.2. For all >0 we have (xy, -, x,) H.(x;, -, 2. M) =0.

Proof: For any fixed element x; of {x,,---,x,}, consider two complexes

K(xl) : 0 Kl(x‘)—mble e )

ey Kt MY
Xt M)

and C=K(xqy oy Ry s X2 M) 1 0 K {xyy -y %4y -

K”*z(x“...,f;“...'x";j\,{) RPN Kl(x“ e, Ry

s M ().,
Note that if we permute x;, x,, -+, %, in any manner the Koszul complex is unchanged.

By Lemma 2.1, for all #>>0
0=2; H(COK(x)) =2, H, (x4, "y X1y s X2 M)

Therefore (%, Xz, -+y %,) Ha(%y, o, 2, M) =0 for all 2>0.



4 Jong-Woo Jeong

Lemma 2.3. Let M be an R-module and let x,, ---, x, be an R-sequence on M. Then

H’.(xll "ty xn=M)==0 if u>0
Hﬁ(xb "ty xu:M) ==M/(x1. ey x,.)M.

Proof: We shall do this proof by induction on 7.

When n=], set x=x, the sequence

K('E:M):OM”’K!I({"M)«»-{-)K")?(;V:M)WiO

is exact.

By our hypothesis, since x is a regular element of M it follows that
Hi(x:M)=0 and Hy(x: M) =M/xM.

Hence the assertion holds for #=1.
In general, we assume that for <z our assertion is true on 7.
Putting C=K(xy, -+, %n-1: M) and K(x)=K(x,) in the formula (%), we obtain an exact

sequence

0— Ky (21 0y Bnoyt M) — K (&1, o2y B0 M)~ Ky 1 (215 0y Xt M)—0

for each u. Therefore, it induces a long exact sequence

PP H‘(x“ ...,x”_l:M)—--;H‘(x" ey xn;f;f)

~— Hy_1(%y, 7y xn-le)"'—"Hud(xh g Kyt M) e,

By induction hypothesis we have H,(x,,-,x.:M)=0 for each #>2. When w=1, since

0— Hl(xh "y xu:M)"‘""M/(xh Ty xn-»l)Mj:"M/(xb tty xuﬂ)M'““""'

is exact and x, is a regular element of M/(x;, +, 4.0 M, we have H,(x,, :«, %,: M) =0.
Therefore H,(xy, -, x,: M) =0 for all #>>1.
It is clear that Hy(xy, -, % M)=M/(x)M. W

Note that H,(xy, ) X1 EY=0: p(&;, %2, -+, %) &8nd we know that, if x. is not & zero-
divisor on E H,(x;,+, %2 EY = H (%4, -+, Zu_y: E/%,E) for each u ([141).
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Lemma 2.4. Let R be a commutative ring, £ a noetherian R~module and x,, -+, x,
elements in the Jacobson radical of R. If Hi(xy, -, %.:E)=0 then H,(x,, -, %, E)=0
for all us%0.

Proof: This will be accomplished by using induction on #. The assertion is trivial
when n=1.
Assume that the assertion has been established when the number of elements involved

is only »—1. For the long exact sequence

(— D%

. Hu(xly "',xn—l:E)

— Hu(xb R Hu—l(xl’ ) xn—I:E)"""""'

vy H.(xu "ty xn—l:E)

which is obtained by (%), if H,(xy, -, %::E)}=0 then H,(x,, -, %;.;:E)=0 as well. By
repeat this process we see that H,{(x;, -, x;: E)=0 for all j=1,2, . ,2. 0=H(x:E)=

(0:zx1) means that x, is not a zero-divisor on E. Put E=E/x,E. Then
Hi(%, X0 EY = H (%2, -y Xy %10 E) 2 H (%9 -+ X0 E/ 2, ED.

Thus H,(xs,++, %,:E) =0 and therefore, by induction hypothesis, H,{(xs, -, %s:E) =0 for
all #+0. Since H,(xp, -, x0:E)= H, (%, %3, -, %.: E), the Lemma is now complete. B

Congider an sXr-matrix

---------------

(s<r)

with coefficients in the ring R.

Let the exterior algebra generated by X,, -+, X, be denoted by K, that is,

K°:=R
K,=RX ,PRX,®D--DRX.
K= @ RX.X,

: Igi<jsr
K.=RX,X,.
Define 4;: K,—— Ky (1<u<r, k=1,2,-,8) by

A(Xi X)) =§'§ (=D ay, Xoy R X,

— 35 —
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where 1<{i;< - <iy<# and 2;, means that X;, is omitted. It is clear that

ddi+4d,=0

for all 2 and k with Ak,
Let @, be the R-module generated by V,"*..Y,"*(#,220, v;+---+v,=q<Lr—s) in the

polynomial ring R[Y,,--,Y,]. Define the K-module R4, such that
R:+1=K:+u®n¢c

where 0<{¢g<{r—s. Then R, is a finitely generated free R-module, because X,,, and

==() for all 7222, Hence we have a complex

d
RA: 0——RA (= RA s o> R RE—— )

where d is defined as follows
(1) g=>1: For each generator X, --X,;, @Y, ¥, (1<, <Ceoe<Lh e <Py U340 +0,=0)

of R“.H.

d(Xf,"‘Xi.,,,@u AN AL Z*A;(Xel'--Xi,“)@Y,"‘-'-Ys"’-’-"Y,"',

where J;* the summation for 7 such that »,2>0.
F)

(ii) ¢=0: R} is the free R~-module generated by {X, X, ®1 | 1<, < <i,<r},

d(X iy X, @1) = | veoererrerracnsens .

Agiy Qyiy oy,

Thus d*=0. Indeed for g=v,4+v,4 -+ 0,>2

dz(Xig‘"Xi,nm@Yl'l' "Y:v’) = %E*(Ahdh’!'dhdh) (Xi ;‘“Xi,.,.,) ®
Y Y T Y ST A (X X Y Y Y
=0

where zl‘:" is the summation for / such that »,2>2. And for each k=1,2,,s

- 36 —
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Qpiy Thing iy gq

N Qi Qyinc s
da()(n'l‘”Xi:-H@Yﬁ) = { th 1‘2 Han :0-

IRRIECPRRPPPRPR PP

i
Vo lsiy @sig*Byigey

Therefore

RA: Qoo RA s RA s s =y RA s Rz Rems )

is a complex which is called a gemeralized Koszul compiex.

let E be an R-module, then
E4:2 RAGRE 1 0 — R i@ E v oo RAQ g E~— E—— 0

is also a complex, we shall use these notations in 84.
Let (A) be the ideal generated by the subdeterminants of A of order s. Then it is
clear that Hy(FE4)=FK/(A)E.

3. Minimal resolutions

Throughout this section (®,®, %) denotes a noetherian local ring. For K-modules

L and M, an R-module homomorphism

is said to be minimal 1f
FOL=F : LQuk=L— MQs k=M

is an isomorphism, or equivalently, if f is surjective and Ker fCMML.

Let M be a finitely generated R-module, and let
F.t i Fpms Fo s oo eees Foeos ot M=)

be a free resolution of M. If
d,' : F,‘ W**K&r(d.'-,) (l‘:—z 1) and dg: FQ"“““‘”’A’I

are minimal, then this free resolution F. is called a minimal resolution of M. If F.
is a minimal resolution of M then

dx . d
F.=F. R ks oo v»pn<-—~’p,‘_y~~—-f-b---~-M»F1-»—1+Fo

— 37 -



P Jong-Woo Jeong

has trivial differential (s.e., d.=0 for ‘all i>1), and
do: Fo— M

is an isomorphism. Therefore
Tor® (M, k)= H,(F.Qa k) =F,

for 1>1 and
Tord (M, k)y=M.

We have to note that each F, is a finitely generated free R-module for >0 and so

rank F;=rank, Tor® (M, k)<os

Proposition 3.1. Let (R, M, k) be a noetherian local ring, and let x,:--,x, be an

R-sequence on R. Then the Koszul complex K(xj, -, %,) { 0— K, (xy, -, 20)— K,y
e
(%1, -y Bn) = o —p Ko (%1, -4, £a) =R—> R/ (%1, -+, %) ——0

is a minimal resolution of R/(xy, -, x,).
Proof: By Lemma 2.3 it follows that

H,(x: R)=0 if #>0 and H,(x: R)=R/(xy, "+, %,).

This implies that the Koszul complex K{x,,:--,x,) is a free resolution of the R-
module R/ (x4, =+, %a).
Since x4, -, x,&=M and k=R/M, it follows that

Eu: Ku(xl, try xn)®k~’Klﬂ—l(xl! Tt xn)®k
is trivial. Since (x4, ---, x,)CM, the map
E: RQb=k—R/ (21, -+, %) Qb=k

is an isomorphism. Therefore K (x,, -, %,) is a minimal resolution of R/ (%, -, x.).

Proposition 3.2. Let (R, M, k) be a noetherian local ring. M be a finitely gener~
ated R-module. Then the following hold; (1) There is a minimal resolution L.— M
of M. (2 For an arbitrary free resolution F.-——M of M there exists an acyclic
complex W. such that F.=L.DW.. :
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Proof: (1) Let M be a finitely generated R-module. Let {w,, -, w;} be a minimal
base of M, i.e., M=Rw,+-++Rw, and M@k i8 an r-dimensional vector space over
k. Let L, be a free R~module with basis {e,,---,e.}, f.e.,

Ly=Re,®--PRe, (Re;z=R as R-modules).
Then there exists an K-homomorphism dy: L,~— M such that dy(e;) =w,.

Then it follows that L®:k=M&zk. We have to note that K;—=Ker d, is a finitely

generated R-module. Let {w,’,---,w,”} be a minimal base of K,. Put
Li=Re' \D---PBRe’, (Re’;=R as R-modules)

We have there exists an K-homomorphism d,: L~ K, such that d,(e;") =w,’,
then it follows that L,®k=K,®%. Repeating this way we get a minimal resolution
of M:

L.t oo Lyees Ly e s eoms Ly— Lg=ems M—0.

(@ Let F.—— M be a free resolution of a finitely generated R-module M.

Since any two minimal resolutions of M are isomorphic ({137), we may assume that
the free resolution F.-—— M is not minimal and so there must be some 7/ such that the
matrix |la.|| defining @, : F;— F,., does not have coefficients in M. Since R is local,

this means that some a;; is unit. But now a change of bases for F; and F,., will

transform |la| to 0 ,
e il
0

This means that we have a commutative diagram

F, -2 . F,
R , R
reF 10N sl papy |
and the complex F. is the direct sum of
""""F¢+1‘—’F'i—””'Ff-r”"’Fi—z“*“’"’

and n.-—-—-...)O-«-..)R-.-..—.;R-——.yO-—-_,...

This process can be continued until we are left with a minimal free resolution L.
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of M and the sum of pieces of the form-..---s (s R~~~ R--—+ in various degrees.
Putting these latter pieces together gives W., which is an acyclic. complex of free

modules. [&

4. Generalized Koszul complexes

For a ring R we shall consider an sxr-matrix

2PN PR Qgyreeeer a5 rey

As in §2, we then have three complexes;

RA: 0~ R py—v RE., s ovmmeos Ri-s R0,
RS: 0~ RS — RS oy s RS s R,

RT: Q- RT R, s a2 RT- 5 R,
There is an R-homomorphism
#err * Rie— REy  (g=0,1, -+, 7-5)

which is defined as follows: Recall that

Rén= @  RX,-X

) IR AR
19i, < oKig g1

ige

where v;,+--4+v,=¢. It will be convenient to set such that

RI*H:: 1 @ Rb'il'”l";f.ﬁq‘1(\5&3‘1”2"3”"’:%0

ﬁl‘l'("'(-',ﬁ'q-—lﬁr“l
where 73+ +9,=q.
We define such that

— 40 -
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(1) gq=r—s: ug==0

(i) 0<g<r—~s—1;
7 (XH“'X"uq®YI”l'"Y:")

i+
_ {?;;(._l)ﬁl ay, Uil‘...ﬁ".'...U“W®Va"z...V".r i 0;=0
0 i v, >1

Lemma 4.1. Under the above situation
d¢+luq+l+uqd¢+120 (q:":ly 2y r—s).

Proof: ID a4 term X“l"'Xg’*w@)Ylul"'Yg" if vl}ZZ then d¢+luq+1'—'¥‘-’o:5uqd0+1. If 01:1

then deyi#¢.;=0 and also wede,,=0 because that, for example,
uqd¢+1(X:;"'Xi,q@Yle'“'“Ys")
+q
== [aulég(ml)" ay, Uy, (]i;"'ﬁi,"'(ji,w)
144
"a“z(a“x Ul’x"'U"nq*’E{"(w n* U"l U*x'“Ufe'”Uuw )

b 1):+q~1 gt [23% U 0-
o (= “lfs+¢‘§-;;(“1) @y Uiy Uiy Uiy

When »,=0, by a straightout calculation as above it follow that dgy s +#eder1=0. BB

Let us put
R§T=0, RPT=R] and R}T=R{DR]
for g=1,+,7r—s and define the complex
ROT: g RET, SRt O Lger O pr_ g

where ¢ is defined by

(@xi -tuxi.y, dxiy) if g2

dxf+xf  if g=2,
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for each (27, x5.,)E=R$T=RIPRs.,. It follows from lemma 4.1 that 3*=0 so that

RST really is a complex.

Let us define an R-module homomorphism
o1 ! R&i— R3T
as follows. For each X, ;- X,, RV ,"1--Y &R, with 1<i, < 7d, 0 lr

Pasi (X Xy, QY 10-Y,0)

0 ifi, =r—1

g

= Xy Xy @Y Y Y i d, =y and v,22]

3T

Uiy olUsy g @V 2V, i 1,57 and vy=Q.

Thus ¢ : R4~ RS'T ia a chain map ((8]), and by the definition of the map ¢ we have

the exact sequence
®
0> RS RAes RS T3 )

of complexes, since Ry is a direct summand of Rf, each of the exact sequences

0 R§— RA— R§'T—0
splits.
For an R-module E, the above split exact sequences induce an exact sequence
0-— ES s FA—— ES1T—s )
of complexes, where E®'T==RS'TR,E. This gives rise to the exact homology sequence
...—-—;H,(ES),___,]{q(EA)___,_,H'(ESaT)m,Hq._l(Es)vm_.g (“)l'
Let (T) be the ideal of R which is generated by subdeterminants with order s—1

in the matrix T.

Theorem 4.2. Assume that the following conditions hold
(i) H,..,(E%)=0
(ii) There exists a non-zero element ¢ of E such that (T)e=0 if H,_ .,(ET)#0

(iii) If (T)e=0 for some a non-zero element e of E then
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for all 1<4, < <4, <r—1.
Then there exists a non-zero element ec=FE such that (A4) e=( if and only if H,_,,,
(E%) 0.

Proof. Suppose that there exists a non-zero element ¢ of E such that (4) ¢=0. Then
H, 1 (E®) 0. This proof is found in [8] without any conditions. Conversely, suppose
that H,.,.;(E*) 0. By condition (i) there is no any element »eES ,—0 with dp=0.
This implies that for (&, P)e=ET,

d(&,n)=0 if and only if 46=0 and p=Q.

Hence we have H,_ ,,(E*)=H, . ,(ES'T)=H,_ ;,1(ET) by the exact sequence (#+), above.
By condition (ii) if H,.,.;(E4)50 then there exists an element ¢(40)&E such that
(T) e=0. Since

|

TP ST Qpiy By, Qgiy @iy
— O L L Y P SO

............ =ay,| e | e (1) Hay,,

Qyiy By, Ayiy - Byiy Qi Asiy g

By condition (iii), (A)e=0. W

: From now on, we assume that K is a noetherian ring. For a finitely generated R-
module £ and an ideal I of R with JE+FE, a sequence uy, ---%,6=] is said to be an
R-sequence on F in I if the following two conditions are satisfied

(i) u; is a regular element of E/(u;, -, u;.)E for 1<i<n

(1) (uyy - un) EE.

If there is not any regular element of E/(u;, -+, #,)E in I then u;, -, u, is said to
be maximal. Since any two maximal R-sequences on £ in I have the same number of
elements ([10]), we shall denote this number by gr (I: E).

For a finitely generated R-module F and an sxXr-matrix A=lla;ll, the following
has been proved ([81);

gr((A): E)+q=r—s+1, (w4),

where g is the largest value of m such H,(E4)+#0.
This property gives the following theorem:
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Theorem 4.3. Let X be a noetherian ring. Let 0—» £’~— E-— E*——() be an exact
sequence of finitely generated R~modules and / an ideal of R with JE’+E’, JE+FE and
IE*E", then

W If gr:E)>gr(I:E*) then gr(l:E)=gr(I:E")+1

2 X gr{:E)=gr(I:E") then gr(I:E">gr(I:E)

@) U grI:EY<<gr(I:E") then gr(I:EN=gr(I:E).

Proof. Let I=(x,,-,%,). The exact sequence 0-—»E’~» E—s E"——s() gives rise
to the exact sequence 0— K(xy, -+, 2,1 E)— K (%), -+, 2,0 E)—— K (X, -+, 5,1 E")-—0

of complexes. Then we obtain an exact homology sequence

v Ha (1 B s Hy(8: )~ Hy (g1 E7) — Hy (31 E')
et i Ho (%3 E)— Hy(%: E*)—— 0 CON

(1) put gr(I:E")=s then, from the exactness of (##); and the property (s«), H,
(#:E")=0 for all t>>r—s. Since gr(I:E)>s then H,(E)=0 for all {>r-s and H,.,
(%:E")#0. Hence y,(x:E")=0 for all t>r-s and H,_, ,(x:E")#0. Therefore gr(I:E")
=8+ 1.

Similarly, we can prove (2) and (3). B

Proposition 4.4. Let R be a noetherian local ring and x,,---, %, be elements which
generate its maximal ideal I, then the followings are equivalent;

(D dim R=r

(2) R is regular

(3 H(2:R)=0.

Proof. Clearly (1)¢&=>(2.

(9=—>(3) Since R is regular then gr(M:R)=dim R=r. Therefore H,(x:R)=0.
3)=>(@1) By lemma 2.4 H,(x:R)=0 implies H,(x:R)=0 for all ##0. (%), induces
gr(M:R)=r, then we obtain ht(M)==r from the principal ideal theorem and ht{(l)>
gr(l:R) for any ideal I of R. Therefore dim R=r. B

Theorem 4.5. Let R be a noetherian local ring. If gr((A):R)=7r—s+1 and a,,c=M

for all 7,7 then
RA: 0 RA jpy—— oo RA&— R/ (A)—~0  (#9),
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is a minimal resolution over R/(A). Moreover the. projective dimension of RB/(A) is

r-s+41.

Proof. From (#«), we know H,(E4)=0 for all m>>0 then (##) is a free resolution
-over R/(A), since R? is free for all 7, By the definition of d;, we have Ker 4,
R4(Note that d,,,(R%,)=Ker d; and a,;c=M). Therefore (+#), is a minimal resolution
over R/(A) (R4=R and (A)CM implies that RQp k ~k>R/(A)R:k).

Let P.—R/(A) be a projective resolution over R/{A). Since R is local every
projective R-module is R-free. Therefore, by Proposition 3.2 there exists an acyclic
«complex W. such that P.=RAPW., which means that the projective dimension of
R/(A) isr—s+1. B

Corollary Let R be a noetherian local ring and x4, .-+, x, generate the maximal ideal

M. If dim R=r then the projective dimension of R/ is r.

Proof. By Lemma 2.4 and Proposition 4.4 H. (#:R)=0 for all us=0. We know gr
{DM:R)=r from (#+),. Therefore by Theorem 4.5 the projective dimension of R/M is

PO |
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