The Functors Γ^{+} , Γ and Infinite Loop spaces

by

Sang-Eon Han

Department of Mathematics, Graduate School, Chonnam National University, Kwangju Korea

1. Introduction

The concept of infinite loop spaces was defined by R. J. Milgram in his paper [19] (1966). And then, J.P. May([15], [8], 1969), S.B Priddy([22], 1971), J.P. Stasheff ([25], 1971), P.O. Kirly([14], 1975), J.F. Adams([1], 1978) studied the infinite loop spaces, intensively.

D.W. Anderson([2], 1970), M.G. Barratt([3]—[5]) have studied the Γ^+ and Γ . In this paper, we shall study infinite loop spaces by means of the Γ^+ , Γ functors.

In §2, we shall study the properties of the $C_m^n(n \ge m)$, and we define the functors Γ^+ and Γ using the structure of C_m^n .

In § 3, we proved the some properties of Γ^+ and Γ -functors. One of these is that for $X,Y \in Obj(Pss)$ if $f \simeq g \colon X \longrightarrow Y \in Morph(Pss)$ then $\Gamma^+ f \simeq \Gamma^+ g$ and $\Gamma(f) \simeq \Gamma(g)$ (Theorem 3.4).

§4 is devoted to the main part of this dissertation, the author's goal is to prove that: Let X be an (n-1) connected CW-complex with dimension $\leq 2n-1$. Then there exists CW-complex W such that $Q(X) \approx Q(SW)$ and $\pi_m^s(X) = \pi_{m-1}^s(W)$ (Theorem 4.4).

Finally, Q(SX) is atomic at 2 and Q(SY) is atomic at 2, where X has the same homotopy type as CP^n (n=1,2,3,4,5...) and Y has the same homotopy type as RP^n (n=1,2,4,5,6,8,...) (Theorem 4.6). Throughout this paper Q and S denote the based loop and the reduced suspension functors respectively. While writting this paper we referred [7], [9], [16]—[21], [23] for homotopy theory and [11], [13] for K-theory.

2. Preliminaries

Let X be a based topological space, and let S^iX be the i-th reduced suspension of X. Then, for a given integer $n \ge 0$ the Freudenthal suspension homomorphism

$$\varphi_i \colon \pi_{n+i}(S^iX) \longrightarrow \pi_{n+1+i}(S^{i+1}X)$$

is an isomorphism for all i>n+1. Therefore, in terms of the direct system $\{\pi_{n+i}:(S^iX), \varphi_i\}$ we can define the stable homotopy group

$$\pi_n^s(X) = \frac{\lim}{i} \pi_{n+i}(S^i X).$$

Then, it follows that $\pi_n^s(X) = \pi_{n+i}(S^iX)$ for all i > n+1. Since S and Q are adjoint functors to each other for based spaces X and Y

$$[SX, Y] = [X, QY]$$

where [SX,Y] is the homotopy class of continuous functions from SX to Y which preserve base point. Therefore

$$\pi_{n+i}(S^iX) = [S^i\Lambda S^n, S^iX] = [S^n, \Omega^i S^iX] = \pi_n(\Omega^i S^iX)$$

and thus for all i>n+1 we have

$$\pi_{\pi}^{s}(X) = \pi_{\pi}(\mathbf{Q}^{i}S^{i}X)$$
.

Furthermore, in the following

we have a continuous map $Q^n \phi_{n+1}$: $Q^n S^n X \longrightarrow Q^{n+1} S^{n+1} X$, where $[1_{S^{n+1}X}]$ is the homotopy class of $1_{S^{n+1}X}$. Then we have a sequence

$$QSX \xrightarrow{Qf_2} Q^2S^2X \xrightarrow{Q^2f_3} Q^3S^3X \xrightarrow{Q^3f_4} \cdots$$

Thus we can define

 $\varinjlim Q^n S^n X = Q(X)$ where the topology of Q(X) is the topology coinduced by the inclusions $Q^n S^n X \longrightarrow Q(X)$ which is an infinite loop space (see the first part of §4).

Let S_n be the symmetric group on the set $N = \{1, 2, \dots, n\}$. For a set $M = \{1, 2, \dots, m\}$, we consider a strictly monotonically increasing map $M \longrightarrow N$. The set of those maps will be denoted by C_n .

Hence, if n < m then $C_m^n = \phi$ and if n = m then C_m^n consists of only one element. Moreover, each element $\alpha \in C_m^n$ induces a group homomorphism

$$\alpha_{\bullet}: S_{\bullet} \longrightarrow S_{\bullet}$$

which is defined as follows. For each $\sigma \in S_m$

$$\alpha_{\bullet}(\sigma) (\alpha(i)) = \alpha(\sigma(i))$$
 $\forall i \in \{1, \dots, m\}$
 $\alpha_{\bullet}(\sigma) (j) = j$ $\forall j \in N - \alpha(M),$

then α_* is a group homomorphism. In fact, for $\sigma_1, \sigma_2 \subseteq S_m$

$$\alpha_{+}(\sigma_{1}\sigma_{2}) (\alpha(i)) = \alpha(\sigma_{1}\sigma_{2}(i))$$

$$= \alpha_{+}(\sigma_{1}) (\alpha(\sigma_{2}(i)))$$

$$= \alpha_{+}(\sigma_{1}) \cdot \alpha_{+}(\sigma_{2}) (\alpha(i)).$$

For $\sigma \in S_n$ and $\alpha \in C_n$, we put

$$\alpha(1)=i_1<\alpha(2)=i_2<\cdots<\alpha(m)=i(m)\leq n$$

then $\{\sigma(i_1), \dots, \sigma(i_n)\} \subset \{1, 2, \dots, n\} = N$. We rearrange $\{\sigma(i_1), \dots, \sigma(i_n)\}$ by the order of natural number such that $\{1 \leq j_1 < j_2 < \dots < j_n \leq n\}$. We define $\sigma_*(\alpha) \subseteq C_n^n$ by

$$\sigma_{\bullet}(\alpha)$$
 (1) = $j_1, \dots, \sigma_{\bullet}(\alpha)$ (m) = j_n .

Then there is a unique map $\alpha^*(\sigma) \in S_n$ such that the following diagram commutes:

$$\alpha^*(\sigma) \bigvee_{M} \begin{array}{c} \alpha \\ \bullet \\ M \end{array} \xrightarrow{\sigma_*(\alpha)} \begin{array}{c} N \\ N \\ N \end{array}$$

That is, if $\sigma(i) = j_k$ then $\alpha^*(\sigma)(1) = k$, $\sigma_*(\alpha)(k) = j_k$ and so on. Thus we can define a reduction map $\alpha^*: S_n \longrightarrow S_m$ for each $\alpha \in C_m$.

In general, α^* is not a group homomorphism as shown in the following example.

Example 2.1. With the above notations, for $\alpha \in C_n$, $\sigma, \tau \in S_n$ we have

$$\alpha^*(\sigma \cdot \tau) = (\tau_*(\alpha))^* (\sigma) \cdot \alpha^*(\tau) \subseteq S_*$$

Proof. To begin with, we note that

$$(\sigma \cdot \tau)_* (\alpha) = \sigma_*(\tau_*(\alpha)).$$

Suppose the commutative diagrams

4

Then, in view of $(\sigma \cdot \tau)_*(\alpha) = \sigma_*(\tau_*(\alpha))$ it follows that

$$(\sigma \cdot \tau)_{+}(\alpha) \cdot \alpha^{+}(\sigma \cdot \tau) = (\sigma \cdot \tau) \cdot \alpha = (\sigma \cdot \tau)_{+}(\alpha) (\tau_{+}(\alpha)^{+}(\sigma) \cdot \alpha^{+}(\tau)),$$

and hence $\alpha^*(\sigma \cdot \tau) = (\tau_*(\alpha))^*(\sigma) \cdot \alpha^*(\tau)$ as desired. ///

Proposition 2.2. For $\alpha \in C_{\infty}^{n}$, $\sigma \in S_{n}$ and $\nu \in S_{\infty}$

$$\alpha^*(\sigma \cdot \alpha_*(\nu)) = \alpha^*(\sigma) \cdot \nu.$$

Proof. By example 2.1 we have

$$\alpha^*(\sigma \cdot \alpha_*(\nu)) = (\alpha_*(\nu)_*(\alpha))^*(\sigma) \cdot \alpha^*(\alpha_*(\nu)).$$

Consider the commutative diagram

$$\alpha^{*}(\alpha_{*}(\nu)) \bigvee_{M} \alpha_{*}(\nu)_{*}(\alpha) \bigvee_{N} \alpha_{*}(\nu)$$

Since $\alpha_*(\nu)$ $(\alpha(i)) = \alpha(\nu(i))$, it is clear that $\alpha_*(\nu)_*(\alpha) = \alpha$ and $\alpha^*(\alpha_*(\nu)) = \nu$. Thus we have

$$(\alpha_{\bullet}(\nu)_{\bullet}(\alpha))^{*}(\sigma) \cdot \alpha^{*}(\alpha_{\bullet}(\nu)) = \alpha^{*}(\sigma) \cdot \nu.$$
 ///

Proposition 2.3. For each $\alpha \in C_{\bullet}^n$, $\alpha^*: S_n \longrightarrow S_{\bullet}$ is a right S_n -map.

Proof. For each $\nu \in S_n$ and $\sigma \in S_n$, $\sigma \cdot \nu$ is defined to be

$$\sigma \cdot \alpha_*(\nu)$$
.

Then $\alpha^*(\sigma \cdot \nu) = \alpha^*(\sigma \cdot \alpha_*(\nu)) = \alpha^*(\sigma) \cdot \nu$ by the above proposition 2.2, which means that α^* is a right S_* -map. ///

Let N-1 be the set $\{1, 2, \dots, n-1\}$. We define the inclusion map $\rho: N-1 \longrightarrow N$ (for $i=1, \dots, n-1, \rho(i)=i$). Then for each $\sigma \in S_{n-1}$ $\rho_*(\sigma)=\sigma$ is defined by

for all
$$i=1,\dots,n-1$$
, $\rho_*(\sigma(i))=i$ and $\rho_*(\sigma(n))=n$.

Hence we may suppose that $S_{n-1} \subset S_n$. We shall use the notation $R = \rho^* : S_n \longrightarrow S_{n-1}$. Then R is characterized by

- (1) it is a right S_{n-1} -map(proposition 2.3)
- (2) $R(\tau_{k,n}) = 1$, for $\tau_{k,n}(1 \le k \le n) = (k, k+1, \dots, n-1, n)$.

Definition 2.4. For a set X the action of S_n on the right $X^n = \{(x_1, \dots, x_n) | i = 1, \dots, n \}$ is defined by

$$(x_1, x_2, \dots, x_n) \cdot \sigma = (x_{\sigma(1)}, \dots, x_{\sigma(n)}).$$

where $(x_1, \dots, x_n) \in X^n$ and $\sigma \in S_n$. Similarly, for each $\alpha \in C_n$ the map $\alpha^* : X^n \longrightarrow X^n$ is defined by

$$\alpha^*(x_1,\dots,x_n)=(x_{\alpha(1)},\dots,x_{\alpha(m)}) \in X^m$$
.

Suppose further that X has a base point *. Then α is said to be entire for (x_1, \dots, x_n) if $x_i = *$ for all $i \in \mathbb{N} - \alpha(M)$.

Proposition 2.5. For $\alpha \in C_n$, $\sigma \in S_n$ and $x = (x_1, \dots, x_n) \in X^n$

$$\alpha^*(x) \cdot \sigma \mid \alpha(M) = (\sigma_*(\alpha))^* ((x) \cdot \alpha^*(\sigma))$$

and α is entire for x if and only if $\sigma_*(\alpha)$ is entire for $x \cdot \alpha^*(\sigma)$.

Proof. We note that $\alpha^*(\sigma)(m+i)=m+i$, $i=1,2,\dots,r$, m+r=n. Therefore, $\alpha^*(\sigma) \in S_n$. In view of the commutative diagram below

$$\alpha^{\bullet}(\sigma) \downarrow \bigoplus_{M} \sigma \longrightarrow N \\ \sigma \downarrow \sigma$$

We see that
$$\sigma_{\#}(\alpha)^{\#}(x \cdot \alpha(\sigma)) = (x_{\alpha \# (\sigma)(1)}, \dots, x_{\alpha \# (\sigma)(m)}, x_{m+1}, \dots, x_n)$$

$$= (x_{\sigma_{\#}(\alpha)(\alpha \# (\sigma)(1)}), \dots, x_{\sigma_{\#}(\alpha)(\alpha \# (\sigma)(m))})$$

$$= (x_{\sigma_{\#}(1)}, \dots, x_{\sigma(\alpha(m))})$$

$$= \alpha^{\#}(x_1, \dots, x_n) \cdot \sigma | \alpha(M).$$

The second part of our assertion is clear from the above expressions. ///

A simplicial set K is a graded set indexed on the non-negative integers together with maps

$$\partial i: K_q \longrightarrow K_{q-1}, S_i: K_q \longrightarrow K_{q+1},$$

 $0 \le i \le q$, which satisfy the following identities

(i)
$$\partial_i \partial_j = \partial_{j-1} \partial_i$$
 if $i < j$

(ii)
$$S_i S_j = S_{j+1} S_j$$
 if $i \leq j$

(iii)
$$\partial_i S_i = S_{i-1} \partial_i$$
 if $i < j$

$$\partial_j S_j = S_{j-1} \partial_i$$
 if $i < j$

$$\partial_i S_i = 1 = \partial_{i+1} S_i$$

$$\partial_i S_j = S_j \partial_{i-1}$$
 if $i > j+1$.

The elements of K_q are called q-simplices, ∂_i and S_i are called a face and a degeneracy operators respectively. For two simplicial sets K and L, $f\colon K\longrightarrow L$ is a simplicial map if ① $^{\mathbf{v}}q\ge 0$, $f_q\colon K_q\longrightarrow L_q$ ② $K_q\longrightarrow f_q\longrightarrow L_q$ and $K_q\longrightarrow f_q\longrightarrow L_q$ are commission of S_i and S_i are called a face and a degeneracy operators respectively.

utative diagrams 3 $f = \{f_q | q \ge 0\}$.

Let $G(\neq \phi)$ be a discrete group. A simplicial set of groups (or simplicial groups) WG is defined as follows.

$$(WG)_n = G^{n+1} = \{ \langle g_0, \dots, g_n \rangle | g_i \in G \text{ for } i = 0, \dots, n \}$$

$$\partial i \langle g_0, \dots, g_n \rangle = \langle g_0, \dots, g_{i-1}, \hat{g}_i, g_{i+1}, \dots, g_n \rangle \quad (\hat{g}_i \text{ means that } g_i \text{ is omitted.})$$

$$S_i \langle g_0, \dots, g_n \rangle = \langle g_0, \dots, g_{i-1}, g_i, g_i, g_{i+1}, \dots, g_n \rangle$$

for all $0 \le i \le n$. In this case, G^{n+1} is a group with the group operation:

$$\langle g_0, g_1, \dots, g_n \rangle \cdot \langle g_0', g_1', \dots, g_n' \rangle = \langle g_0 g_0', g_1 g_1', \dots, g_n g_n' \rangle$$

Moreover, G acts freely on the right of WG such that

$$\langle g_0, g_1, ..., g_n \rangle g = \langle g_0 g, ..., g_n g \rangle,$$

where $g \in G$ and $\langle g_0, \dots, g_n \rangle \in G^{n+1}$. Since each $(WG)_n = G^{n+1}$ has the identity as a base point we say that WG is a pointed simplicial set (group). We define a pointed map

$$\sigma: (WG)_n \longrightarrow (WG)_{n+1}$$

$$\langle g_0, \dots, g_n \rangle \longrightarrow \langle 1, g_0, \dots, g_n \rangle$$

where 1 is the identity of G. With this in mind we can prove that the pointed simplicial set WG is contractible ([3]). Furthermore, we have the following note ([3]):

Note 2.6. For $\langle g_0, \dots, g_n \rangle \in (WG)_n$ and $g \in G$ we define

$$\langle g_0, \dots, g_n \rangle \sim \langle g_0 g, \dots, g_n g \rangle$$
.

Then "~" is an equivalence relation. Put

$$WG/\sim =WG$$

then WG is a classifying space for G, *i.e.*, WG is equal to an Eilenberg-MacLane space K(G,1). Moreover $G \subset WG$.

Note 2.7. W is a functor from the category of pointed sets to the category of pointed simplicial sets. For pointed sets A_1 and A_2 we have

$$W(A_1 \times A_2) = W(A_1) \times W(A_2)$$

since $W(A_1 \times A_2)_n = W(A_1)_n \times W(A_2)_n$

Therefore, for pointed sets A, A_1, \dots, A_n and a base point preserving function $f: A_1 \times \dots \times A_n \longrightarrow A$, there corresponds

$$W(f): W(A_1 \times \cdots \times A_n) = W(A_1) \times \cdots \times W(A_n) \longrightarrow W(A)$$

In particular, for maps

$$\alpha_n: S_n \longrightarrow S_n, \alpha^*: S_n \longrightarrow S_n$$

mentioned before, there correspond

$$W(\alpha_{\bullet}): WS_{\bullet} \longrightarrow WS_{\bullet}, W(\alpha^{\bullet}): WS_{\bullet} \longrightarrow WS_{\bullet}.$$

We shall put $W(\alpha_*) = \alpha_*$ and $W(\alpha^*) = \alpha^*$.

Definition 2.8. Let X be a pointed simplicial set. Then the following relations

generate an equivalence relation on the disjoint union

$$U(X) = \coprod_{n>0} WS_n \times X^n$$

- (1) $(w, x) \sim (w \cdot \sigma, x \cdot \sigma)$ $(w \in WS_n, x \in X^n, \sigma \in S_n)$
- (2) $(w,x) \sim (\alpha^*(w), \alpha^*(x))$ $(w \in WS_n, x \in X^n, \alpha \in C_n^n (n \geq m \geq 0))$

where α is entire for x. We put

$$\Gamma^+(X) = U(X)/\sim$$
.

We denote the equivalence class of $(w, x) \in WS_n \times X^n$ by $[w, x] \in \Gamma^+(X)$. Note that S_0 is the trivial group $\{1\}$, if we put $1 = (\langle 1 \rangle, \langle 1, 1 \rangle, \cdots) = WS_0$, then $(1, \phi) \in WS_0 \times X^0$. Thus $[1, \phi] \in \Gamma^+X$ is the canonical base point of Γ^+X .

We define $\varphi: U(X) \times U(X) \longrightarrow U(X)$ by

$$((\langle \sigma_0 \rangle, \langle \sigma_1, \sigma_2 \rangle, \cdots) \times (x_1, \cdots, x_n), (\langle \eta_0 \rangle, \langle \eta_1, \eta_2 \rangle, \cdots) \times (x_1', \cdots, x_m'))$$

$$\longrightarrow (\langle \sigma_0 \cdot \eta_0 \rangle, \langle \sigma_1 \cdot \eta_1, \sigma_2 \cdot \eta_2 \rangle \cdots) \times (x_1, \cdots, x_n, x_1', \cdots, x_n') \in WS_{n+m} \times X^{n+m}$$

where $(\langle \sigma_0 \rangle, \langle \sigma_1, \sigma_2 \rangle, \cdots) \times (x_1, \cdots, x_n) \in WS_n \times X^n$ and $(\langle \eta_0 \rangle, \langle \eta_1, \eta_2 \rangle, \cdots) \times (x_1', \cdots, x_n') \in WS_n \times X^n$. In particular, $\sigma_i \eta_i \in S_{n+n}$ for $\sigma_i \in S_n$ and $\eta_i \in S_n$ is defined by

$$\sigma_i \eta_i(r) = \sigma_i(r) \text{ for } 1 \le r \le n$$

 $\sigma_i \eta_i(n+r) = n + \eta_i(r) \text{ for } 1 \le r \le m.$

Then U(X) is a non-commutative monoid with identity $(1, \phi)$. Therefore I^+X is also a non-commutative monoid with identity $[1, \phi]$.

3. The Functors Γ^+ and Γ

It follows from Note 2.6 that the discrete space S_n occurs naturally as a subspace of WS_n and so as a subspace of U(X).

We define the natural embedding

$$i_{\mathbf{X}}: X \longrightarrow \Gamma^{+}X$$

for a pointed simplicial set X by $i_{\mathbf{x}}(x) = [1, x]$ for all $x \in X$, where $1 \in S_1 \subset WS_1$. By a pair (P^+X, X) we mean X embedded in P^+X by $i_{\mathbf{x}}$.

Definition 3.1. We put $K = \{1, \dots, k\}$ and $KN = \{1, 2, \dots, kn\}$. For integers i such that $1 \le i \le k$ we define $\lambda_i : N \longrightarrow KN$ by

$$\lambda_i(j) = (i-1)n+j$$
 $(j \in N)$.

Since

$$KN = \{1, 2, \dots, n; n+1, \dots, 2n; 2n+1, \dots, 3n; \dots; (k-1)n+1, \dots, kn\}$$

 λ_i maps N to the i-th block of n elements of KN. Therefore $\lambda_i = C_n^{hn}$ and thus we have a homomorphism

$$(\lambda_i)_*: S_n \longrightarrow S_{in}$$

(see § 2). In view of Note 2.7 there exists a homomorphism

$$W((\lambda_i)_*): WS_n \longrightarrow WS_{kn}$$

for $i=1,\dots,k$. We put $W(\lambda_i)_*=(\lambda_i)_*$ (or $=\lambda_i$).

We also define a homomorphism $\mu: S_{k} \longrightarrow S_{kn}$ by

$$\mu(\sigma) ((i-1)n+j) = (\sigma(i)-1)+j$$

for $\sigma \in S_k$, $1 \le i \le k$ and $1 \le j \le n$. By Note 2.7, we see that

$$W(\mu) = \mu \colon WS_{\bullet} \longrightarrow WS_{\bullet}$$

is a homomorphism.

With the above notations we may define a map

$$h_x: \coprod_{k>0} \coprod_{n>0} WS_k \times (WS_n \times X^n)^k \longrightarrow U(X)$$

as follows. For $w \in WS_k$, $\alpha_i = (w_i, x^i) \in WS_n \times X^n (x^i = (x_1^i, \dots, x_n^i) \in X^n)$, $(w, \alpha_i, \dots, \alpha_k) \in WS_k \times (WS_n \times X^n)^k$. Define

$$h_{\mathbf{x}}(w,\alpha_1,\cdots,\alpha_k)=(\mu(w)\cdot\lambda_1(w_1)\cdot\cdots\cdot\lambda_k\ (w_k),\ x^1,\cdots,x^k),$$

where we identify $(X^*)^{\perp}$ with $X^{\perp n}$ in the obvious way. Note that for

$$(\langle \sigma_0^1 \rangle, \langle \sigma_1^1, \sigma_2^1 \rangle, \cdots), \cdots, (\langle \sigma_0^{k+1} \rangle, \langle \sigma_1^{k+1}, \sigma_2^{k+1} \rangle, \cdots) \in WS_{kn}, (\langle \sigma_0^1 \rangle, \langle \sigma_1^1, \sigma_2^1 \rangle, \cdots) \\ \cdots (\langle \sigma_0^{k+1} \rangle \cdots) = (\langle \sigma_0^1 \cdots \sigma_0^{k+1} \rangle, \langle \sigma_1^1 \cdots \sigma_1^{k+1}, \sigma_2^1 \cdots \sigma_2^{k+1} \rangle, \cdots) \in WS_{kn}.$$

Therefore, h_x is well defined since $\mu(w), \dots, \lambda_k(w_k)$ are in WS_{kn} .

Moreover h_x induces a natural map H_x : $\Gamma^+\Gamma^+X \longrightarrow \Gamma^+X$ ([3]).

That is, for a base point preserving function $f: X \longrightarrow Y$ the following diagram is

commutative.

$$\begin{array}{c|c}
\Gamma^{+}\Gamma^{+}(X) & \xrightarrow{H_{X}} \Gamma^{+}(X) \\
\Gamma^{+}\Gamma^{+}(f) & \textcircled{e} & \Gamma^{+}(f) \\
\Gamma^{+}\Gamma^{+}(Y) & \xrightarrow{H_{Y}} \Gamma^{+}(Y)
\end{array} (*)$$

where $\Gamma^+(f)$ $[w, x_1, \dots, x_n] = [w, f(x_1), \dots, f(x_n)]$ for $w \in WS_n$ and $(x_1, \dots, x_n) \in X^n$.

Proposition 3.2. Let X be a pointed space X. Then the following diagrams are commutative:

Proof. The commutativity of the second diagram is obvious by the functorial property of $H_X: \Gamma^+\Gamma^+(X) \longrightarrow \Gamma^+(X)$ (see the preceding diagram) (*). The commutativity of the first diagram can be proved as follows.

(1) The commutativity of the left triangle: For each $[w, x_1, \dots, x_n] \in \Gamma^+X$, we have $\Gamma^+(i_X) = [w, ([1, x_1], \dots, [1, x_n])]$ and thus

$$H_{X}[w, ([1, x_{1}], \dots, [1, x_{n}])] = [\mu(w)\lambda_{1}(1) \dots \lambda_{n}(1), x_{1}, \dots, x_{n}]$$
$$= [w, x_{1}, \dots, x_{n}].$$

Hence we have the commutative diagram

(2) The commutativity of the right triangle: For each $[w, x_1, \dots, x_n] = P^+(X)$,

$$H_{\mathbf{x}} \circ i_{\mathbf{f}^{+}(\mathbf{x})} = H_{\mathbf{x}} [1, [w, x_{1}, \dots, x_{n}]]$$

$$= [\mu(1) \cdot \lambda_{1}(w), x_{1}, \dots, x_{n}]$$

$$= [w, x_{1}, \dots, x_{n}].$$

Therefore the following diagram is commutative:

Let M be a monoid. By the universal group of M is meant a group UM which is universal with respect to homomorphisms from M to groups. That is, there exists a natural monoid homomorphism $U:M\longrightarrow UM$ such that for a group G if there is a monoid homomorphism $f\colon M\longrightarrow G$ then there exists a unique group homomorphism $F\colon UM\longrightarrow G$ such that $f=F\cdot U$.

By taking the universal groups of the monoids and monoid homomorphisms involved, we may define the universal simplicial group UM of a simplicial monoid M. Therefore given a pointed simplicial set X we define ΓX to be the universal simplicial group of the simplicial monoid Γ^+X . That is $U\Gamma^+X=\Gamma X$.

In consequence, we have the functors Γ^+ and Γ such that

$$\Gamma^+$$
: Pss $\longrightarrow SM$

and

$$\Gamma \colon \operatorname{Pss} \xrightarrow{\Gamma^+} SM \xrightarrow{U} SG$$

where Pss=the category of pointed simplicial sets and simplicial maps which preserve base points

SM=the category of simplicial monoids and simplicial monoid homomorphisms and SG=the category of simplicial groups and simplicial group homomorphism.

Lemma 3.3. Given a pointed space X, $\pi_0(P^+X) = Z^+\pi_0(X)$, the free abelian monoid on the pointed set $\pi_0(X)$, where $Z^+ = \{1, 2, 3, \dots\}$.

Proof. Since $(WS_n)_0 = S_n$, the vertices $(\Gamma^+ X)_0 = F^+ X_0$, the free monoid on the set of vertices of X. Now given a simplicial set A, $\pi_0(A) = A_0/\sim$, where \sim is the equivalence relation generated by

$$\partial_0 a \sim \partial_1 a$$
 for $a \in A_1$.

Any 1-simplex $\xi \in \Gamma^+ X$ may be written $\xi = [\langle 1, \sigma \rangle, x_1, \dots, x_n], \sigma \in S_n, x_i \in X_1$. Then $\partial_0 \xi = [\sigma, \partial_0 x_1, \dots, \partial_0 x_n] = [1, \partial_0 x_{\sigma^{-1}(1)}, \dots, \partial_0 x_{\sigma^{-1}(n)}],$ and $\partial_1 \xi = [1, \partial_1 x_1, \dots, \partial_1 x_n].$ Thus we

see that for $\pi_0(P^+X)$ the order of the coordinates does not matter and so the result is stated. ///

Theorem 3.4. For $X,Y \in Obj(Pss)$ and $f,g: X \longrightarrow Y$ in Morph(Pss) with $f \simeq g$ (homotopic), we have $\Gamma^+(f) \simeq \Gamma^+(g)$ and $\Gamma(f) \simeq \Gamma(g)$.

Proof. Let SS be the category consisting of all simplicial sets and all simplicial maps. Then we have the functor

$$\begin{array}{ccc} \operatorname{Pss} \times SS & \longrightarrow & \operatorname{Pss} \\ & & & & \downarrow \\ A \times X & & A \times |X = A \times X/^* \times X \end{array}$$

where $X \neq \phi$. Then there is a natural transformation

$$\beta^+$$
: $\Gamma^+(A) \times B \longrightarrow \Gamma^+(A \times |B)$ (A \in Pss, B \in SS)

which is defined as follows.

Recall that $\Gamma^+(A)$ is an identification space (quotient space) of the monoid $U(A) = \prod_{n\geq 0} WS_n \times A^n$. Let

$$\begin{array}{ccc} \Delta_n \colon B & \longrightarrow & B^n \\ & & & & \\ b & \longmapsto & (b, \dots, b) \end{array}$$

be the n-fold diagonal map. This induces a map

We note that the group S_n (see §2) acts on A^n , B^n and $(A \times B)^n$ after usual manner, that is,

$$(x_1, \dots, x_n)\sigma = (x_{\sigma(1)}, \dots, x_{\sigma(n)}),$$

 $((x_1 \times y_1), \dots, (x_n \times y_n))\sigma = ((x_{\sigma(1)} \times y_{\sigma(1)}) \dots, (x_{\sigma(n)} \times y_{\sigma(n)})),$
for $(x_1, \dots, x_n) \in A^n$ or B^n and $(x_1 \times y_1), \dots, (x_n \times y_n) \in (A \times B)^n$ and $\sigma \in S_n$.

We define β^+ by the following commutative diagram.

$$(\coprod_{n\geq 0} WS_n \times A^n) \times B = \coprod_{n\geq 0} WS_n \times (A^n \times B) \longrightarrow \coprod_{n\geq 0} WS_n \times (A \times B)^n \longrightarrow \coprod_{n\geq 0} WS_n \times (A \times |B)^n$$

$$\Gamma^+(A) \times B \longrightarrow \Gamma^+(A \times |B).$$

Consider the equivalence relation in definition 2.8. One of the identifications gives $[w,x]=[w\sigma, x\sigma]$ in $I^{r+}(A)$, where $w\in WS_n$, $x=(x_1,\dots,x_n)\in A^n$ and $\sigma\in S_n$. By definition of β^+ , we have

$$\beta^{+}(\llbracket w, x \rrbracket \times b) = \llbracket w, (x_{1}, b), \cdots, (x_{n}, b) \rrbracket$$

$$\beta^{+}(\llbracket w\sigma, x\sigma \rrbracket \times b) = \llbracket w\sigma, (x_{\epsilon(1)}, b), \cdots, (x_{\epsilon(n)}, b) = \llbracket w\sigma, ((x_{1}, b), \cdots, (x_{n}, b))\sigma \rrbracket$$

$$= \llbracket w, (x_{1}, b), \cdots, (x_{n}, b) \rrbracket$$

and thus $\beta^+([w,x],b) = \beta^+([w\sigma,x\sigma],b)$ where $b \in B$. The other relations in definition 2.8 come from identifying $WS_{n+1} \times A^n \times * \longrightarrow WS_n \times A^n$ which is defined as follows.

Since WS_n is a subgroup of WS_{n+1} , we put $T'=WS_{n+1}/WS_n$.

Then $WS_{n+1}=WS_n\times T'$. Define

$$T \colon WS_{n+1} = WS_n \times T' \longrightarrow WS_n \\ \underset{w \times t'}{ } \quad \underset{w}{ } \quad \underset{w}{ } \quad \underset{w}{ } \quad U$$

Next, the projection

$$\begin{array}{ccc}
p_n \colon A^n \times \{*\} & \longrightarrow & A^n \\
& & & & & & \\
(x_1, \dots, x_n) \times \{*\} & \longmapsto (x_1, \dots, x_n).
\end{array}$$

Then $T \times P_n$: $WS_{n+1} \times A^n \times \{*\} \longrightarrow WS_n \times A^n$ is well defined. Since $A^n \times \{*\} \times B \longrightarrow A^n \times \{*\} \times B^{n+1} = A^n \times B^n \times \{*\} \times B \longrightarrow (A \times |B)^n \times (\{*\} \times B) \subseteq (A \times |B)^{n+1}$, we have the commutative diagram:

$$WS_{n+1} \times A^{n} \times \{*\} \times B \longrightarrow WS_{n+1} \times (A \times |B)^{n} \times (\{*\} \times B) \subset WS_{n+1} \times (A \times |B)^{n+1}$$

$$\downarrow T \times p_{n} \times 1_{B} \quad \textcircled{o} \qquad \qquad \downarrow T \times p_{n}$$

$$WS_{n} \times A^{n} \times B \quad \longrightarrow \quad WS_{n} \times (A \times |B)^{n}.$$

Thus, it follows that β^+ is well-defined. And the naturality of β^+ is obvious from the construction. We have a map

$$\beta \colon \Gamma(A) \times B \longrightarrow \Gamma(A \times | B)$$

$$\pi(r_i)^{\eta_i} \times b \longmapsto \pi(\beta^+(r_i, b)^{\eta_i}),$$

which is an extension of β^+ .

We put $f_0 = f$ and $f_1 = g$. Since $f_0 \simeq f_1: X \longrightarrow Y$ for I = [0, 1] we have the commutative diagram

where $F: f_0 \simeq f_1$ is a homotopy.

From the homotopy F we have the induced map $F^b: X \times |I \longrightarrow Y|$ where $F^b(x \times |0) = f_0(x)$ and $F^b(x \times |1) = f_1(x)$. Therefore

$$\Gamma^+(F^b) \circ \beta^+: \Gamma^+(X) \times I \longrightarrow \Gamma^+(Y)$$

and

$$\Gamma(F^b) \circ \beta \colon \Gamma(X) \times I \longrightarrow \Gamma(Y)$$

are homotopies of $\Gamma^+(f_0) \simeq \Gamma^+(f_1)$ and $\Gamma(f_0) \simeq \Gamma(f_1)$ respectively. ///

4. Infinite Loop Spaces

Let the topological space be a compactly generated based countable CW-space in this chapter. If there are topological spaces X_0, X_1, \cdots such that $X = X_0$ and X_i has the weak homotopy type of ΩX_{i+1} for all $i=0,1,2,\cdots$ then X is called an infinite loop space, where Ω is the loop functor. In this sense,

$$Q(X) = \underline{\lim} \ \Omega^n S^n X$$

defined in §2 is an infinite loop space, which is proved as follows.

Proof. To begin with, we note that for a sequence of Hausdorff space

$$\{*\} \subset Y_0 \subset Y_1 \subset \cdots \subset Y_n \subset \cdots$$

- ① the space $\lim_{n \to \infty} Y_n$ has the weak topology with respect to $\{Y_n\}$,
- ② for a compact space I=[0,1],

$$(\underset{\longrightarrow}{\lim} Y_{\mathbf{n}})^{I} = \underset{\longrightarrow}{\lim} Y_{\mathbf{n}}^{I}, \ f(0) = \bullet = f(1)$$

where the space $Y_n^I = \{f : I \longrightarrow Y^n | f \text{ is continuous} \}$ has the compact open topology $\{[10]\}$.

It suffices to construct spaces $E_m(m \ge 0)$ such that

$$E_0=Q(X)$$
, $E_i \underset{\sim}{w} \Omega E_{i+1}$ $(i \ge 0)$

where w means a weak homotopy equivalence. Put $E_n = Q(S^nX)$ for $m \ge 0$. Then

$$\begin{split} \Omega E_{\mathbf{m}} &= \Omega Q(S^{\mathbf{m}}X) = \Omega \varinjlim \Omega^{n} S^{\mathbf{m}+n}(X) = (\varinjlim \Omega^{n} S^{\mathbf{m}+n}(X))^{T} \\ &= \varinjlim (\Omega^{n} S^{\mathbf{m}+n}(X))^{T} \text{ (by the above description)} \\ &= \varinjlim \Omega^{n+1} S^{n+1}(S^{\mathbf{m}-1}X) = Q(S^{\mathbf{m}-1}X) = E_{\mathbf{m}-1} \ (m \ge 1). \end{split}$$

Hence Q(X) is an infinite loop space. ///

We shall give some of examples of infinite loop spaces as follows.

Example 4.1. (i) Suppose the Eilenberg-MacLane space $K(\pi,n)$. Since $\Omega K(\pi,n+1)$ $\underbrace{w}_{n} K(\pi,n)$ $(n \ge 0)$ ([12]), it follows that $K(\pi,n)$ is an infinite loop space for any $n \in \{0,1,2,\cdots\}$.

(ii) Let O(k) = the orthogonal group in k-dimensions, U(k) = the unitary group of k-dimensions, Sp(k) = the symmetric group in k-dimensions.

$$O = \varinjlim O(k)$$
, $U = \varinjlim U(k)$, $Sp = \varinjlim Sp(k)$.

Let BO, BU and BSp be classifying spaces of the groups O, U and Sp respectively. Then we have the following ([10], [26])

$$O \underset{\sim}{w}\Omega(Z \times BO)$$
, $Z \times BO \underset{\sim}{w}\Omega(U/O)$, $U/O \underset{\sim}{w}\Omega(Sp/U)$
 $Sp/U \underset{\sim}{w}\Omega(Sp)$, $Sp \underset{\sim}{w}\Omega(Z \times BSp)$, $Z \times BS p \underset{\sim}{w}\Omega(U/Sp)$
 $U/Sp \sim \Omega(O/U)$ and $O/U \underset{\sim}{w}\Omega(O)$,

where Z= the set of integers.

If we put $E_n=0$ $n\equiv 0$ mod 8

$$E_n = Z \times BO$$
 $n \equiv 1 \mod 8$
 $E_n = U/O$ $n \equiv 2 \mod 8$
 $E_n = Sp/U$ $n \equiv 3 \mod 8$

$$E_n = Sp$$
 $n \equiv 4 \mod 8$
 $E_n = Z \times BSp$ $n \equiv 5 \mod 8$
 $E_n = U/Sp$ $n \equiv 6 \mod 8$
 $E_n = O/U$ $n \equiv 7 \mod 8$

then O is an infinite loop space. Since

$$U \underset{\sim}{w} \Omega(Z \times BU)$$
, $Z \times BU \underset{\sim}{w} \Omega(U)$

U is also an infinite loop space. It is shown that $Z \times BO$ is also an infinite loop space in ([6], [24]).

(ii) Suppose the infinite loop space $\{E_n\}$ such that $E_0 = Q(X)$, and $\{E_n = Q(S^nX)\}$, where X is a pointed Hausdorff topological space. We put $F_n = \lim_{n \to \infty} \Omega^i E_{n+i}$. Then

$$\Omega F_{n+1} w F_n$$
, $E_n w F_n$ for all $n \ge 0$.

Proof. $\Omega F_{n+1} = \Omega \lim_{i \to \infty} \Omega^{i} E_{n+1+i} = \lim_{i \to \infty} \Omega^{i+1} E_{n+i+1}$ (by the above descript ion) $= F_n$. That is, $\Omega F_{n+1} = F_n$, and thus F_0 is an infinite loop space.

On the other hand, for $m \ge 0$ and $n \ge 0$,

$$\pi_{\mathbf{m}}(F_n) = \pi_{\mathbf{m}}(\underset{\bullet}{\underline{\lim}}\Omega^i E_{n+i}) = \underset{\bullet}{\underline{\lim}} \pi_{\mathbf{m}}(\Omega^i E_{n+i})$$

$$\cong \underset{\bullet}{\underline{\lim}} \pi_{\mathbf{m}+i}(E_{n+i}) = \pi_{\mathbf{m}}(E_{\mathbf{n}}) \quad ([10]).$$

Thus for all $n \ge 0$, $E_n w F_n$. ///

Let G_i and H_i be groups and f_i : $G_i \longrightarrow H_i$ a group homomorphism for $i \ge 0$. $\{f_i | i = 0, 1, 2, \cdots\}$ is called a k-isomorphism if f_i is an isomorphism for i < k and f_k is an epimorphism.

For topological space X, Y and a continuous map $f: X \longrightarrow Y$, if $f_{i*}: \pi_i(X, x) \longrightarrow \pi_i(Y, f(x))$ is a k-isomorphism for each $x \in X$ then f is said to be k-equivalence. Given a topological space X, there is a CW-complex K by CW-approximation such that $f: K \longrightarrow X$ is a weak homotopy equivalence. Then the pair (K, f) is called a resolution of X.

Lemma 4.2. Given an (n-1) connected $(n \ge 1)$ space Y there exists a CW-complex K that has no cells of dimension < n except for a single 0-cell and (K, f) is a resolution of Y.

Proof. Our proof is divided into two steps.

Step I. Given $f: X \longrightarrow Y$ such that $f \mid A$ is an inclusion (X, Y) are topological spaces, $A \subseteq X$ there is a commutative diagram where i is an inclusion, $\pi j = 1$ and $j\pi \sim 1$ (rel i(A)), \sim means a homotopy, Z is a mapping cylinder of f.

$$\begin{array}{c}
Z \\
\downarrow & \uparrow j \\
X \longrightarrow Y
\end{array}$$

Step II. Assume first that $n \ge 1$. By induction, we will construct an m-dimensional K^n such that $K^n \supseteq K^{n-1} \supseteq \cdots \supseteq K^0 = *$ and m-equivalences $f_m : (K^n, *) \longrightarrow (Y, *)$ such that $f_m \mid K^{m-1} = f_{m-1}$. We begin the induction with $*=K^0 = K^{n-1}$ and $f_{n-1}(*) = *$. Suppose now that we have constructed (K^n, f_n) . Let Z be the mapping cylinder of $f_m(A = *)$ as in step I. Then we have a commutative diagram

$$\begin{array}{ccc}
& \pi_i(Z, *) \longrightarrow \pi_i(Z, K^*, *) \longrightarrow \cdots \text{exact} \\
& \downarrow^{i^*} & & & & \\
& & \downarrow^{\pi_*} \\
& & \downarrow^{\pi_*}$$

which shows $\pi_i(Z, K^n, *) = 0$ for $i \le m$. Let $\{f_a | \alpha \in A\}$ generate $\pi_{m+1}(Z, K^n, *)$, $f_a: (B_a^{m+1}, S_a^n, *) \longrightarrow (Z, K^n, *)$, where B_a^{m+1} is an (m+1) dimensional unit ball and S_a^m is its boundary. We construct K^{m+1} as follows:

$$K^{m+1} = K^m \cup \coprod B_a^{m+1}/x \sim f_a(x)$$
 for $x \in S_a^m \subset B_a^{m+1}$.

 K^{m+1} is a closure finite cell complex and we give it the weak topology. Hence K^{m+1} is a CW-complex and K^m is a subcomplex.

Define $F: (K^{m+1}, K^m) \longrightarrow (Z, K^m)$ extending by $F|B_{\alpha}^{m+1}=f_{\alpha}: (B_{\alpha}^{m+1}, S_{\alpha}^{m}, *) \longrightarrow (Z, K^m, *)$ for each $\alpha \in A$. Define $f_{m+1}=\pi F$ where $\pi: Z \longrightarrow Y$.

Then $f_{n+1}|K^n=\pi|K^n=f_n$. Consider now the mapping cylinder Z' of F with $A=K^n$ as in step I and the diagram

$$\pi_{i}(Z', K^{n}, *) \longrightarrow \pi_{i}(Z', K^{m+1}, *) \longrightarrow \text{exact}$$

$$\uparrow \quad i_{*} \cong \qquad \pi_{*}$$

$$\cdots \longrightarrow \pi_{i+1}(Z', K^{m+1}, *) \longrightarrow \pi_{i}(K^{m+1}, K^{n}, *) \longrightarrow \pi_{i}(Z, K^{n}, *)$$

$$\pi_{i}(Z, K^{n}, *) = 0 \text{ for } i \leq m \text{ and } F_{*}: \pi_{m+1}(K^{m+1}, K^{n}, *) \longrightarrow \pi_{m+1}(Z, K^{n}, *)$$

is onto by construction.

Hence $\pi_i(Z', K^{m+1}, *) = 0$ for $i \le m+1$, and i_* is an (m+1)-isomorphism. Now consider $\pi' : Z' \longrightarrow Z$ and $\pi : Z \longrightarrow Y$. These are homotopy equivalences and $\pi \pi' i = \pi F$ = f_{m+1} . Hence $(f_{m+1})_*$ has the desired property and the induction is complete.

We now define $K = \coprod_{\alpha \in \Lambda} K^m$ and $f \colon K \longrightarrow Y$ by $f \mid K^m = f_m$. If we give K the weak topology, we have $\pi_i(K, K^m, *) = 0$ for $i \le m$.

Hence in the following diagram

all maps are isomorphisms. ///

Lemma 4.3. Let X and Y be CW-complexes and assume that $g: X \longrightarrow Y$ is a weak homotopy equivalence. Then g is a homotopy equivalence.

Proof. As that of lemma 4.2, our proof is divided into two steps.

Step I. Let $f\colon X{\longrightarrow} Y$ be a base point preserving map. The map f is a weak homotopy equivalence iff given any CW-pair (L,L_0) and maps $\alpha\colon L_0{\longrightarrow} X$, $\beta\colon L{\longrightarrow} Y$ with $f\alpha=\beta|L_0$, there is a map $g\colon L{\longrightarrow} X$ with $g|L_0=\alpha$ and $fg{\sim}\beta$ (rel L_0).

For the proof of step I, consider the following diagrams, where B^{n+1} is the (n+1)-dimensional ball and S^n is *n*-sphere. Put $S^n = L_0$, $B^{n+1} = L$

leads to the conclusion that f_* is an isomorphism of homotopy groups by the null homotopic property for any choice of $x \in X$.

Suppose conversely that f induces isomorphisms in homotopy. Let Z be the mapping cylinder of f:

Define $F: L \times 0 \cup L_0 \times I \longrightarrow Z$ by $F(l,0) = j\beta(l)$ and $F(l,t) = (\alpha(l),t)$ for $l \in L_0$. Extend F to $F: L \times I \longrightarrow Z$. Let $\gamma: L \longrightarrow Z$ be a map given by $\gamma(l) = F(l,1)$. Then $\gamma(L_0) \subset X \times 1$. Produce $g: L \longrightarrow X \times 1$ with $g \sim \gamma(\text{rel } L_0)$. Now $g \mid L_0 = \alpha$, and $fg = \pi g \sim \pi \gamma \sim \beta(\text{rel } L_0)$ where the last homotopy is given by $(l,t) \longrightarrow \pi F(l,t)$.

Step II. Since $g: X \longrightarrow Y$ is a weak homotopy equivalence, by step I there exists $h: Y \longrightarrow X$ with $gh \sim 1$ (homotopic) in the category C^* whose objects are topological space with a base point and morphisms are continuous functions which preserve the base point. Since (Y, h) is a resolution of X, we can similarly find $j: X \longrightarrow Y$ with $hj \sim 1$ (homotopy) in C^* . Now $g \sim ghj \sim j$, hence $hg \sim 1$ and h is a homotopy inverse of g.

Theorem 4.4. Let X be an (n-1) connected based CW-complex of dimension $\leq 2n-1$, where $n\geq 1$, there is a CW-complex W such that Q(X) has the same homotopy type as Q(SW) and $\pi_*(X) = \pi_{n-1}(W)$.

Proof. By lemma 4.2, there exists a CW-complex Y with $(Y)^{n-1}$ a single point and $f: Y \longrightarrow X$ is a weak homotopy equivalence, i.e., $Y \sim X$ where " \sim " means a weak homotopy equivalence.

By lemma 4.3, $Y \approx X$ where " \approx " means the same homotopy type. Then construct W such that $SW \approx Y$ inductively by desuspending the attaching maps of the cells of Y. Since X and SW are CW-complexes with a base point, we see that $Q(X) \approx \Gamma(X)$, and $Q(SW) \approx \Gamma(SW)$ (see [3]). By theorem 3.4, $\Gamma(X) \approx \Gamma(SW)$, we have $Q(X) \approx Q(SW)$.

If n>1, $Y\approx SW$ is equivalent to $SY\approx S^2W$, thus the dimensional restriction implies that the adjoint map $Y\longrightarrow \Omega S^2Y$ induces an isomorphism in homology in dimension $\leq 2n-1$.

Finally,

$$\pi_{\mathbf{m}}^{s}(X) = \pi_{\mathbf{m}}(Q(X)) \cong \pi_{\mathbf{m}}(Q(SW)) = \pi_{\mathbf{m}}(\underset{\longrightarrow}{\lim}\Omega^{n}S^{n+1}W)$$

$$= \pi_{\mathbf{m}-1}(\underset{\longrightarrow}{\lim}\Omega^{n}S^{n+1}W)$$

$$= \pi_{\mathbf{m}-1}(\underset{\longrightarrow}{\lim}\Omega^{n+1}S^{n+1}W)$$

$$= \pi_{\mathbf{m}-1}(Q(W)) = \pi_{\mathbf{m}-1}^{s}(W)$$

Definition 4.5. An(n-1) connected space Y is called *atomic* if given any self map $f: Y \longrightarrow Y$ such that $f_*: H_n(Y) \longrightarrow H_n(Y)$ is an isomorphism then $f_*: H_*(Y) \longrightarrow H_*(Y)$ is an isomorphism. Y is called *H-atomic* if further, Y is an *H*-space and we are

given only self H-maps f. Y is called atomic at p, where p is a prime, if Y has the same property with all homology groups having Z/pZ coefficients. If Y is called H-atomic at p if further, Y is an H-space and we are given only self-H-maps f.

Theorem 4.6. Q(SX) is atomic at 2 where X has the same homotopy type as CP^n , $n \in \{1, 2, \dots\}$ with base point and Q(SY) is atomic at 2 where Y has the same homotopy type as RP^n for $n \neq 3$ or 7 with base point.

Proof. $Q(CP^n)$ is H-atomic at 2 for $n \ge 1$, $Q(RP^n)$ is also atomic at 2 for $n \ne 3$ or 7 (see [8]). Since $\Omega Q(SX)$ is equivalent to Q(X), thus $\Omega Q(SCP^n)$ is H-atomic at 2 for $n \ge 1$ and $\Omega Q(SRP^n)$ is also H-atomic at 2 for $n \ne 3$ or 7.

The "atomic property" is invariant under homotopy equivalence. If Y is 1-connected and ΩY is H-atomic (H-atomic at p) then Y is atomic (atomic at p).

By lemma 3.3 $\pi_0(\Gamma^+X) = Z^+\pi_0(X)$ which is the free abelian monoid on the pointed set $\pi_0(X)$. Since SCP^n and SRP^n are also path connected based CW-complexes, $Q(SCP^n) \approx \Gamma(SCP^n)$, $Q(SRP^n) \approx \Gamma(SRP^n)$.

Thus, it suffices to prove that $\pi_1(Q(SCP^n))=0$.

$$\pi_1(Q(SCP^n) = \pi_0(\Omega Q(SCP^n)) = \pi_0(\Omega \underset{\longrightarrow}{\lim} \Omega^n S^n SCP^n)$$

$$= \pi_0(\underset{\longrightarrow}{\lim} \Omega^{n+1} S^{n+1} CP^n)$$

$$= \pi_0(QCP^n)$$

$$= \pi_0(P^+(CP^n))$$

$$= Z^+ \pi_0(CP^n) = 0.$$

Thus $Q(SCP^n)$ is atomic at 2. Furthermore, $Q(SCP^n) \approx \Gamma(SCP^n) \approx \Gamma(SX) \approx Q(SX)$ where $X \approx CP^n$, $n \in \{1, 2, \dots\}$.

Thus Q(SX) is also atomic at 2. Similarly, Q(SY) where $Y \approx RP^n$ $n \neq 3$ or 7 is also atomic at 2. ///

References

- 1. J.F. Adams, Infinite loop spaces, Annals of Math. Studies, no 90, Princeton University presses and Univ. of Tokyo press, 1978.
- 2. D.W. Anderson, Spectra and I-sets, A.M.S. (1970).
- 3. M.G. Barratt and P.J. Eccles, I^{*}-structures-I: A free group functor for stable homotopy theory, Topology 13 (1974), 25~45.
- 4. M.G. Barratt and P.J. Eccles, I'*-structures-II: A recognition principle for infinite loop spaces, Topology 13 (1974), 113~126.
- M.G. Barratt and P.J. Eccles, I*-structures-II: The stable structure of Q"S"X, Topology 13 (1974). 103~153.

- J.M. Boardman, R.M. Vogt, Homotopy everything H-spaces, Bull. Amer. Math. Soc. 74 (1968), 1117~1122.
- J.M. Boardman, R.M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lec. notes in Math. no 347, Springer, 1973.
- H. E. A. Campbell, F. R. Cohen, F. P. Peterson and P. S. Selick, Self maps of loop spaces.
 I. Trans. Amer. Math. Soc. V 293, (1986), 41~51.
- 9. G.E. Carlsson, R.L. Cohen, and W.C. Hsiang, The homotopy type of the spaces of pseudo-isotopies, preprint, 1986.
- 10. J.M. Cohen, Stable homotopy theory, Lec. notes in Math. no 167, Springer, New york, 1970.
- 11. E. Dyer and R.K. Lashof, Homology of iterated loop spaces, Amer. Jour. Math. 84 (1962), 35~38.
- 12. B. Gray, Homotopy theory, Acad. press, New York, 1978.
- 13. M. Karoubi, K-theory, Springer, New York, 1978.
- 14. P.O. Kirley, On the indecomposability of iterated loop spaces, Thesis Northwestern University (1975).
- 15. J.P. May, Categories of spectra and infinite loop spaces, Lec. notes in Math. no 99, Springer, 1969, 448~479.
- J.P. May, The geometry of iterated loop spaces, Lec. notes in Math. no 271, Springer, 1972.
- 17. J.P. May, E -spaces, group completions and permutative categories in "New developments in topology", Lon. Math. Soc. Lec. notes, no 11, Cambridge Univ. press, 1974, 61 ~93.
- 18. J.P. May, Simplicial objects in algebraic topology, Van Nostrand, New York, 1969.
- 19. R.J. Milgram, Iterated loop apaces, Annals of Math. 84 (1966), 386~403.
- 20. I.W. Milnor, On spaces having the homotopy type of a CW-complex, Trans. Amer. Math. Soc. 90 (1959), 357~362.
- 21. G. Nishida, The nilpotency of elements of the stable homotopy groups of spheres. J. Math. Soc. Japan 25 (1973), 707~732.
- 22. S.B. Priddy, On $Q^{\infty}S^{\infty}$ and the infinite symmetric group, *Proc. of symposia in pure Math.* 22 A.M.S. 1971, 217~220.
- 23. E.H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.
- J.D. Stasheff, H-spaces from a homotopy point of view, Lec. notes in Math. no 161.
 Springer, New York, 1970.
- J.D. Stasheff, Infinite loop spaces-On historical survey, Lec. notes in Math. no 196, Springer, 1971.
- N.E. Steenrod, Milgram's classifying space of a topological group, Topology 7 (1968), 348~368.