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1. Introduction

The concept of infinite loop spaces was defined by R.J. Milgram in his paper [19]
€1966). And then, J.P. May([15], [8], 1969), S.B Priddy([22], 1971); J.P. Stasheff
([25], 1971), P.O. Kirly([14], 1975), J.F. Adams([13, 1978) studied the infinite
foop spaces, intensively,

D.W. Anderson({2], 1970), M.G. Barratt([3]J—[5)) have studied the I'* and I.
In this paper, we shall study infinite loop spaces by means of the /™*,I" functors.

In §2, we shall study the properties of the CJ (#n>>m), and we define the functors
It and I’ using the structure of C .

In §3, we proved the some properties of I'* and I'-functors. One of these is that
for X,Ye<0bj(Pss) if f~g: X—Y&Morph(Pss) then I'*f=~I*g and I'(f)=I(g)
(Theorem 3.4).

§4 is devoted to the main part of this dissertation, the author’s goal is to prove
that: Let X be an (#—1) connected CW-complex with dimension =2x#—1. Then there
exists CW-complex W such that @(X)=~Q(SW) and #i(X)=na.(W) (Theorem
4.4).

Finally, Q(SX) is atomic at 2 and Q(SY) is atomic at 2, where X has the same
homotopy type as CP" (#=1,2,3,4,5...) and ¥ has the same homotopy type as RP*
{n=1, 2.4. 5,6, 8, --) (Theorem 4.6). Throughout this paper @ and S denote the based loop
.and the reduced suspension functors respectively. While writting this paper we referred

{71, [91, [161—[21], [23] for homotopy theory and [11], [13] for K-theory.
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2. Preliminaries
Let X be a based topological space, and let S'X be the i~th reduced suspension of
X. Then, for a given integer #>>0 the Freudenthal suspension homomorphism
@y 7fn+i(SiX)““‘“‘*ﬂ'wHi(S‘HX)

is an isomorphism for all i>n+-1. Therefore, in terms of the direct system {7y

(S*X), ¢:} we can define the stable homotopy group

L e (S0

7l (X)=
Taza, it frllows that 7.)(X) =7, (S'X) for all i>>r-+1. Since S and Q are adjoint:
fuaztors to each other for based spaces X and Y

[SX, Y]=[X, 9v]

where [SX,Y] is the homotopy class of continuous functions from SX to ¥ which

preserve base point. Therefore

and thus for all £>n-+1 we have
T (X)=r, (S X).
Furthermore, in the following

[S™HX, S™MX=[S"X, @S*X]
[lsn+lx] bt [(/’)n+1]

we have a continuous map @"¢,,,: Q"S"X—-»0""1S*"1 X, where [lsn+1x] is the hom--

otopy class of 1.,,:,. Then we have @ sequence
s 2Y s e

Thus we can define
l_z'y_z» Q"S"X =Q(X) where the topology of @(X) is the topology coinduced by the:
inclusions @"S"X~—»@(X) which is an infinite loop space (see the first part of §4).

In what follows, we shall describe the Barratt’s I or I"*-functor (L33—~[5D).

- 43 .
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Let S, be the symmetric group on the set N={1,2,-,n}. For a get M={1,2, .-, m},
we consider a strictly monotonically increasing map M- N. The set of those maps
will be denoted by CJ.

Hence, if n<m then Co=¢ and if n=um then C, consists of only one element.

Moreover, each element ae=C ] induces a group homomorphism
ag: Sa—>S.

which is defined as follows. For each ¢e=S,

a(0) (a(®))=alc(®))  vie{l, -, m}
an(a) (f)=j vieeN —a(M),

then a4 is a group homomorphism. In fact, for sy, 0,65,

ax(0,0;) (a(D)) =alo,0:(7))
=ax(0y) (alox(s)))

=ag(ay) « axloy) (@(?)).

For ¢S, and a=C,;, we put
a(l)=i{<a(2) =6, lalm)=i(m)=n

then {o(i}), =, 0(f)} (1,2, ,n}=N. We rearrange {o(i;), -,0(s)} by the order of
natural number such that {1/ <f<-~<[ju=n}. We define oy4(a)e=C, by

agula) (1) =7, Uﬁ(a) (m) T fge

Then there is a unique map a*(s)e=S, such that the following diagram cominutes:

M2 3N
a* (o) © a

] ayla) >N

That is, if o() =74, then a*(o)(1)=k, dula)(k)=7j, and so on. Thus we can define a
reduction map a*: S,-——S. for each ac=C, .

In general, a* is not a group homomorphism as shown in the following example.

Example 2.1. With the above notations, for ac=CJ, 7,7&S, we have
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a*(a:t)=(tala))* (0) a*(r)ESa.
Proof. To begin with, we note that
(0:0)e (@) =0u(zu(a)).

Suppose the commutative diagrams

M.._,f‘.___..)N M...-g-—-)N
a*(r)l © T a*(a-r)l © lo‘-r
Tula) Y and o Thla)

P/ADICING (R MWDy

r.(a)*(a)l © o
Mo

Then, in view of (0-7)a{a) =0ou(tye(a)) it follows that
(0+7)a (@) :a*(0:7) = (0:7) ra= (0+7) s (@) (vala)*(0) -a*(7)),

and hence a*(g+7) = (z4{a))* (o) «a*(z) as desired. ///

Proposition 2.2. For ac=C}, oS, and v&=S,
a*(gra,(¥)) =a*(g)v.

Proof. By example 2.1 we have
a*(0-ay(v)) = (an(¥)u(a))*(0) -a*(as(»)).

Consider the commutative diagram

M5 3N
a"(a'(v))l laa(v)
(V) (@)
MOEIIN .

Since au(¥) (a(i))=a(¥ (), it is clear that ay(V)a(a)=a and a*(as(v))=y. Thus

we have

(an (P u(@))* () -a*(an(v)) =a*(a)-». ///

—— 5 0 [
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Proposition 2.3. For each ae=C}, a*: S.-—Sa is a right S,~map.
Proof. For each ve=S, and 0e=S,, o-v is defined to be

agrag(Vv).

Then a*(g-v)=a*(g a,(¥))=a*(s)-v by the above proposition 2.2, which means that
a* is a right Sy-map. ///

Let N—1 be the set {1,2,:-,m—1}. We define the inclusion map p: N--1-— N(for
£==1,--,m—1, p{{)=¢). Then for each 0c=S,., pu(0)=0 is defined by

for all =1, -, n—1, pu(c(@))=1 and gulo(n))=n.

Then R is characterized by
(1) it is a right S..,~map(proposition 2.3)
@ R(ra,n) =1, for 14, (1SkSn)=(k, k+1, - n—1,n).

Definition 2.4. For a set X the action of S, on the right X"={(¥,, -, x)|i=1,-, %
%X} is defined by

(X1 Xgy s Bn) 2O = (Zecsyr s Koend)s

where (%5, x,)&X" and 0c=S,. Similarly, for each a¢=C; the map o*: X"—> X"
is defined by

a*(xu M) xn) = (xl(l)n Tty xa(-))eg"{'.

Suppose further that X has a base point *. Then a is said to be entire for (x,,--,
x.) if x;=# for all ;/&=N—a(M).

Proposition 2.5. For ae=C ], 0<=S, and x=(x;, -, 2,)EX"
a*(x) 0 la(M) = (oula))* ((x)-a*(a))
and « is entire for x if and only if o4(a) is entire for x-a*(e).
Proof. We note that a*(o)(m i) =m -7, i=1,2,-,7, m+r=n. Therefore, a*(s)=
Sy In view of the commutative diagram below
M2 5N
a*(o) © g

JEZCING

— 5 1 .



6 Sang-Eon Han

We see that 0'*(‘!»’)’("'“(”)) == (Xa#cex (s "y Xacodindr milr *'s Xn)
= (X g 2o (0313) s s Doy cax@* (3¢m2>
= (xlc(L): ttty xc(l(u)))

::a*(xl! ttty xn) -dla(M).
The second part of our assertion is clear from the above expressions. ///
A simplicial set K is a graded set indexed on the non-negative integers together
with maps

0i: Ky——Kqeyy Sit Ko—Kgyy,

0=i=gq, which satisfy the following identities
(i) 9,0,=08;-49; if i<4
(1) 8:S;=814,S; if {7
(iii) 9,S,="S;.10; if ¢<J
0,5;=8;.40; if i<
0;S;=1=0;,,5;
9:8;=5;8;, if i>j+1.
The elements of K, are called g-simplices, d; and S; are called a face and & degene-

racy operators respectively. For two simplicial sets K and L, f: K—L is a simpli-

cial map if @ Y¢>0, fi: Ke— Lo @ Kq—-iq—-——)L., and KR»—IL—)LQ are comm-
ai a{ S;’ Si

Kg_l'—‘—f-g;l—-—)Lq—l Kﬂ«}-]"’Ij“t'L"‘)LQ—i’l
utative diagrams @ f={f,]¢>0}.

Let G(#¢) be a discrete group. A simplicial set of groups (or simplicial groups)
WG is defined as follows.

(WG),':G’I—O-l:{<g0,...,g”>lgi€G for i:O,..-'”} ’
0i<8o 1 &n>=<Lor s &i-1» &is &ivrs 1 &a>> (§i means that g; is omitted.)
8;:<&os B =L Go s &icts Zis &is Eirts ™ &n>

for all 0<f<n. In this case, G"*! is a group with the group operation:
LLor &rs - &a> * L&a's &2 8n' > LGB0 s 8181y 11 &kl >
Moreover, G acts freely on the right of WG such that

<Lor B1r 1 &> E=L Loy "y Euk >y
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where g&G and <gq, -+, £.>>€G™". Since each (WG),=G™' has the identity as a
base point we say that WG is a pointed simplicial set (group). We define a pointed

map

o: (WG, — (WG)nps
’<11g0r"'1gn>

<g0r "'ogn>

where 1 is the identity of G. With this in mind we can prove that the pointed

simplicial set WG is contractible([3]). Furthermore, we have the following note([3]):

Note 2.6. For <g, -, £.>=(WGE), and g=G we define
<Eos s B~ LBy s BB
Then “~” ig an equivalence relation. Put
WG/~=WG

then WG is a classifying space for G, i.e., WG is equal to an Eilenberg-MacLane
space K(G,1). Moreaver GCWG.
Note 2.7. W is a functor from the category of pointed sets to the category of

pointed simplicial sets.For pointed sets 4, and A, we have

W (A1 X A) =W (A) X W.(4;)
gince WA X Ag) =W {(AD XW(Az)a.

Therefore, for pointed sets A, A4,,:-, A, and a base point preserving function f: A;X

-+ X A,—> A, there corresponds
W(f): WA X XA)=W(4) X« XW(A)— W (A4).
In particular, for maps
dy: Sy — S, a*: S, — S,
mentioned before, there correspond
W(ag): WSa— WS, W(a®*): WSr—>WS,.
We shall put W(a,)=as and W{(a*)=a*.

Definition 2.8. Let X be a pointed simplicial set. Then the following relations
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generiate an equivalence relation on the disjoint union

Uxn =-1%°WS,. xX*

O (w,2)~ (w0, x.0) (WEWS,, x=X", 0e=8,)
@ (w,x)~(a*(w), a*(x)) (ws=WS,, x<X", ac=Cr (h>m0))

where « is entire for x. We put

I"(X)=U(X)/~.
We denote the equivalence class of (w,%)}<=WS, X X" by [w, xJe=I"t(X). Note that S,
is the trivial group {1}, if we put 1==(<1),{1,1), )==WS, then (1, p)=WSyx X°.

Thus [1,$]='*X is the canonical base point of I'*X.
We define ¢:U(X) XU(X)—U(X) by

((<GO>! (‘71! Uz>s "') X (xu Tty xn)! ((77(7): <771; 7/2): ) X (xl” Ty xu,))
({05 Nods {T1* N1y O3 e) ") X (Xys*r0y Xmy %1’y 7vs 2 )EWS, X X

where (<00>r (0'1, Uz>, "') X (x!v e x,,)e’—:fWS,,xX" and ((77())’ <771’ 772)’ "') X (x.l’r "ty x-l)
EWS.x X" In particular, 0,7€=8,,. for ¢,=S, and 7,5, is defined by

o (ry=0,(r) for 1<r<n

o i(n+r)=n+9,(r) for 1<<r<m.

Then U(X) is a non-commutative monoid with identity (1, ¢).

Therefore I'*X is also a non-commutative monoid with identity [1, 1.

3. The Functors I'* and [

It follows from Note 2.6 that the discrete space S, occurs naturally as a subspace
of WS, and so as a subspace of I/(X).

We define the natural embedding
ix: X I*X

for a pointed simplicial set X by ix(x)=[1,2] for all x&=X, where 1&S,CWS,. By
a pair ("X, X) we mean X embedded in I'*X by iy.

Definition 3.1. We put K={1,---, 4} and KN-:{1,2,:,kn}. For integers 7 such
that 1-</<<k we define ;: N-——> KN by

— 54—
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AN =0GE-Dn+j  (GEN).
Since
KN={1,2, 05 n+1,,20; 2n-F1, -, 305 (k—~1)n+1, -, hm}

A; maps N to the i~-th block of 7 elements of KN. Therefore i,&=C} and thus we

have a homomorphism
(A)w: Sa = Sin

(see §2). In view of Note 2.7 there exists a homomorphism
W((A)w): WS, —— WS,

for l'zlg"',k. We put W(X;)*"’(Ri)* (Or:::zi)'

We also define a homomorphism i: Sy——Si, by

1(0) (G—1Dn+jy=(a{f)~1)+]
for 0e=S,, 1<i<k and 1<{j<In. By Note 2.7, we see that

W) =p: WSy—-WS,,

is a homomorphism.

With the above notations we may define a map

he: I I WS (WS, X XMt U(X)

220 20
as follows. For we=WS;, a;= (w;, x)EWS, X X"(xt==(x,% -+, 2,5 )EX"), (0, ay, -+, a4)
EWS, X (WS, x X™)*. Define
he(w, @, -y ax) = (U(w) A2 ()« Ay (Wa), &, %%),

where we identify (X™)* with X** in the obvious way. Note that for

({860, £a1%, 03", ), oy (kO **™), (oMM, 0441, - YEW Sim ({06')) 0411021 ++)

...((aolﬂ'l)...) oz ((gol...goi+!>’ <a-ll.,.a-lb+1’ azl...azb"‘l)’ "‘)EWS),.-

Therefore, ky is well defined since u(w), -, Az(w,) are in WS;,.
Moreover kg induces a natural map Hy: I''I*X—sI*X ([3D).
That is, for a base point preserving function f: X——Y the following diagram is

. 5 5 J—
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commutative.

o —25 5o
| © | e *

vy 2y ¥y
where I''(F) [w, %y, -+, 2, 1=[w, f(x), -+, F(x.)] for wEWS, and (xy, -, x)EX"

Proposition 3.2. Let X be a pointed space X. Then the following diagrams are

commutative:

) LGy pepe iy prxy  prrerex) s pepex)

N /s
AN . / I (Hy) Hy
Irreo \ x //1r+<n i
X

NN 420 ¢ VG mr(x) —=%y I+x)

Proof. The commutativity of the second diagram is obvious by the functorial
property of Hy: 'l (x)——I*(X)(see the preceding diagram) («). The commuta-
tivity of the first diagram can be proved as follows.

(1) The commutativity of the left triangle: For each [w,xy, -, ¥, X, we have
I*(ix)y=[w, ((1, %], -, [1,%,])] and thus

HX[wr {1, xl]’ "y Els xn])J:[ﬂ(W)lx(l)“ln(l), Xis vty xn]

:Ew’ Xys oy xn:}'

Hence we have the commutative diagram

oo Dy pepr

AN
\\@ Hy
Irtens \

N (XD

(2) The commutativity of the right triangle: For each [w, x;, -, . J=I (X)),

HXQ‘.I’(X)zHXEIv [w) Xys +tty xa]]
2[/‘(1) ’21(”1), X9 ***s xn]

:Ew7 Xyp oty xu]-
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Therefore the following diagram is commutative:
P (X) <—"—f—*ﬂ'->-r+}X)

v
Hy ©  ASlpraon o /Y
v
r+(X) v

Let M be a monoid. By the universal group of M is meant a group UM which is
universal with respect to bomomorphisms from M to groups. That is, there exists a
natural monoid homomorphism U:M-—sU/M such that for a group G if there is a
monoid homomorphism f: M—— G then there exists a unique group homomorphism F':
UM——G such that f=F.U.

By taking the universal groups of the monoids and monoid homomorphisms invol-
ved, we may define the universal simplicial group UM of a simplicial monoid M.
Therefore given a pointed simplicial set X we define I’X to be the universal simplicial
group of the simplicial monoid I'*X. That is Ur+X=/7"X.

In consequence, we have the functors /'t and I such that

I't: Pss — SM

and

r: pss I sm Y, sg,

where Pas=the category of pointed simplicial sets and simplicial maps which preserve

base points
SM=the category of simplicial monoids and simplicial monoid homomorphisms

and SG=the category of simplicial groups and simplicial group homomorphism.

Lemma 3.3. Given a pointed space X, 7,(/*X)=2Z%r;(X), the free abelian monoid
on the pointed set mo(X), where Z+={1,2,3,-}.

Proof. Since (WS,)=S., the vertices (I"*X),=F*X, the free monoid on the set

of vertices of X. Now given a simplicial set A, 7,(A) =4q/~, where~is the equivalence

relation generated by
doa~9;a for ac=A,.

Any 1-simplex$e&/""X may be written £=[{1,0), %, %,), 0€S,, =,X,. Then
anE:EO;aoxu"'saoxujzﬁlv aoxc""(xh"',aox"'lc,.ﬂ, and a,extl.alx,,---,a,x,}. Thus we
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see that for mo(/'*X) the order of the coordinates does not matter and so the result
is stated. ///

Theorem 3.4. For X,Ye<0b5(Pss) and f,g: X——Y in Morph(Pss) with f~g
(homotopic), we have I''(f)=~I*(g) and I'(f)=I"(g).
Proof. Let SS be the category consisting of all simplicial sets and all simplicial

maps. Then we have the functor

PssajSS -~ Pss
AxX AUXleAXX/*XX

where X+¢. Then there is a natural transformation
Bt: I't(A) X B——I'*(Ax|B) (Ac=Pss, Be=SS)

which is defined as follows.

Recall that /" (A) is an identification space (quotient space) of the monoid U(A)
= || WS,XA". Let

n20

e

ey

=W

il
(8, -, 8)

—
be the n-fold diagonal map. This induces a map

Wﬁ,\.xA"xB»——-————-—)WS. />§ (AxB)"* which makes following diagram
AN / commutative.
N /
1'.71: XAn\
N\ /
WS, x A*xB"
We note that the group S, (see §2) acts on A" B" and (AXB)’ after ugual manner,

that is,

(X1, -5 X0) 0= (Zecars s Boad)s

(%915 =5 (Ba X F0)) 0= ((Xgc13X Yec13) s (Foemy X Yeews) )
for (%5, -+, %2)6=A" or B* and

(1 X510y (X X ¥ )E(AXB)Y" and g8,

We define S* by the following commutative diagram.
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("]ij‘ WS, x A™) % an&l. WS, x (A" x B)w—-—*n_lé'WS.. X (AXB) ~-~*"j§o W8, x (AX|B)

T+(A) X B B T (AxB).

Consider the equivalence relation in definition 2.8. One of the identifications gives
[w,x]=[we, xc] in I'*(A), where we=WS,, x=(x,, -, 2,)¢=A" and 0&=S,. By definition
of B*, we have

18+(Ew’ x] Xb) ::[wr (xll b)s Tty (xm b)]

=[w, (%1, 8),, (%0 B)]

and thus §*([w,x],6) =p*([wo,x0],b) where bc=B. The other relations in definition
2.8 come from identifying WS, X A" X #—WS,x A" which is defined as follows.
Since WS, is & subgroup of WS.,,;, we put 7°=WS.,;/WS..
Then WS, =WS,xT’. Define

T: WSu=WS,XT’" -— WS,
W U
w.

wx it bt
Next, the projection
bnz AX {#} s A"
(R1y o0y ) X {w} (2, -0y %)
Then TXP,: WS,y X A™ % {#} WS, x A" is well defined.

Since A"X {#} X B—— A" X {#} X B 152 A" X B* X {#} X B——{AX|B)" % ({#} X B)C=

(AxIB)™**, we have the commutative diagram:

WSh X A"' X (%} X B~ WS, . X (AXB)" X ({#} X BYCTW S, X (AX|B)"H!
| TXpaxla © | Txp
WS, xA"XB —— e WS, X (AX|B)".

Thus, it follows that §* is well-defined. And the naturality of g* is obvious from the

construction. We have a map

B: I'(A)XB — I'(Ax|B)
Z(r "X s z(f*(r, 5)"),

which is an extension of fi*.
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We put fo=f and f,=g. Since fo==f;: X—Y for I=[0,1] we have the commuta~

where F: fo,~f, is a homotopy.

tive diagram

A
e
X
~—
v
)
X
X
g

From the homotopy F' we have the induced map F*: XX|[-—-Y where F*(xX|0)
=fo(x) and F?(xx|1)=f,(x). Therefore

It(F®)eft: '(X) xI—— I (Y)
and
T'(F?)of: M X)XI—I(Y)

are homotopies of I'*(fo)==I""(f,) and I'(fo)=I(f,) respectively. ///

4. Infinite Loop Spaces

Let the topological space be a compactly generated based countable CWW-space in
this chapter. If there are topological spaces Xy, X, --- such that X=X, and X; has the
weak homotopy type of QX,,, for all /=0,1,2,--- then X is called an infinite loop

space, where () is the loop functor. In this sense,
QX) m}jﬂ Q" s~ X
defined in §2 is an infinite loop space, which is proved as follows.
Proof. To begin with, we note that for a sequence of Hausdorff space
{*}CY@CY;C"'CY"C‘"

@ the space Lx_rg’ Y. has the weak topology with respect to {V.},
@ for a compact space I=[0,1],

(im Y)'=HmY ., f(0)=e=1(1)
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where the space Y,.'={f: I-—Y"|f is continuous} has the compact open topology

LL100).

It suffices to construct spaces E.(m>>0) such that

Ey=Q(X), Ei,‘QQEiH (i=0)

where % means a weak homotopy equivalence. Put E,=@Q(S*X) for m>>0. Then

~

QF,.=0Q(58"X) =Qli_*n_1’ Q5™ X) = (EL@,Q"S"*"(X)) !
ZEE, (Q*S**™(X))" (by the above description)
=%Q"+‘S"*’ ($*1X)=Q(S" ' X)=Ex., (m=1).

Hence @(X) is an infinite loop space. ///

We shall give some of examples of infinite loop spaces as follows.

Example 4.1. (i) Suppose the Eilenberg-MacLane space K (7, n). Since QK (x,n-+1)

wK(z,n) (n=0) ([12]), it follows that K (x,#) is an infinite loop space for any ne=

{09 1! 21 "’}-
(ii) Let O(k)=the orthogonal group in k-dimensions, {/(k)=the unitary group of

k-dimensions, Sp(k)=the symmetric group in k-dimensions.
O:EE‘., O(k), U::_E__nl Uk, Sp:_lini Spk).

Let BO, BU and BSp be classifying spaces of the groups O,U and Sp respectively.
“Then we have the following ([10], [267)

0 wQ(ZxBO), ZxBOwQU/0), U/0wQ(SH/U)
Sp/UwQ(Sp), SpwQ(ZxBSp), ZxBSpwQ(U/Sp)
U/Sp~Q(0/U) and O/U%Q(0),

where Z=the set of integers.

If we put E,=0 n=0 mod §
E,=ZxBO n=1 mod 8
E.=U/0 n:=2 mod 8
E,=Sp/U »n=3 mod 8
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E,=8p n=4 mod 8
E,=ZxBSpn=5 mod 8§
E,=U/Sp n=6 mod §
E.,=0/U  n=7 mod 8§

then O is an infinite loop space. Since
UwQ(ZxBU), ZxBU®QU)

[/ is also an infinite loop space. It is shown that Z<BO is also an infinite loop space
in ({61, [240).
(ii) Supposz the infinite loop spacs {£,} such that E,=@Q(X), and jE.=Q(S*X)..

whrrs X is a printed Hausdorff topological space. We put F,.::li_in Qi E,.:. Then

{

QF . ®F., E.wF, for all #>20.

is, QF..=F., and thus F, is an infinite loop space.

On the other hand, for m>>0 and n>0,

TulFy) :x.(_liﬁQ‘E,,“) zl_iin_’ mu(QE,L0)
=lim 74y (Enyi) =7a(Ea) ((10D).

Thus for all #>0, E.#F.. ///

Let G; and H,; be groups and f;: G,— H; a group homomorphism for 72>0. {f:}
£=0,1,2,+-} is called a k-isomorphism if f; is an isomorphism for /<% and f, is an
epimorphism.

For topological space X,Y and a continuous map f: X——Y, if fie: 7 (X, x)—>
7 (Y, f(x)) is a k-isomorphism for each x¢=X then f is said to be k-equivalence-

Given a topological space X, there is a CW-complex K by CW-approximation such

that f: K——X is a weak homotopy equivalence. Then the pair (K, F) is called a

resolution of ¥.

Lemma 4.2. Given an (n—1) connected (#2>1) space Y there exists a CW-complex

K that has no cells of dimension< n except for a single 0-cell and (K, f) is a resol-
ution of Y.

Proof. Our proof is divided into two steps.
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Step I. Given f: X——Y such that f|A is an inclusion (X,Y are topological
spaces, ACX) there is a commutative diagram where ; is an inclusion, 7j=1 and

Ju~1 (rel i(A4)), ~ means a homotopy, Z is a mapping cylinder of f.
/Z
Aty
/z/ WJJ
X ‘”JF"’ Y

Step II. Assume first that »>>1. By induction, we will construct an m-dimensional
K* such that K"DK""!'D- DK%=+ and m-equivalences f.: (K*, %)~ (¥, #) such that
SalK®'=f,.;. We begin the induction with #=K°=K""! and f,_,(+) =«. Suppose now
that we have constructed (K™, f.). Let Z be the mapping cylinder of fa(A=#) as in

step ]. Then we have a commutative diagram

m’”l(z' ’)“"””i (Zr K*®, *)"’"”‘" -eexact

i
= g (£, K® #)—o 1 (K™, %) = Kad
(fa)e— 1, (Y, %)

which shows 7;(Z, K*, #) =0 for i<\m. Let {f,|ac=A} generate 7., (Z, K", %), fo: (B,
S."y#)— (Z, K", %}, where B,**! is an (m-+1) dimensional unit ball and S,* is its

boundary. We construct K™ ag follows:
K"V =K*J B B,*"/x~f(x) for xS, B,

K" is a closure finite cell complex and we give it the weak topology. Hence K™
is a CW-complex and K™ is a subcomplex.

Define F: (K™, K™)—(Z,K"™) extending by F|B,*"'=f,: (B, ", S, #)— (Z,
K*,») for each ac=A. Define f,,;==nF where n: Z—Y.
“Then fay:|K*=n|K*=f,. Consider now the mapping cylinder Z’ of F with A=K" as
in step ] and the diagram

(2 K®, %)~ (2", K™, &)—-rexact

iy = w
oo (2, KM, @) —— i (K™, K, #)—n.(Z, K", %)
*

7 (Z, K", #)=0 for s<m and Fy: W-H-I(K'H, K=, *)‘“’“""xm»u(zﬁ K*, %)

is onto by construction.
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Hence =,(Z’, K™, #)=0 for i<m+1, and 7, is an (m+1)-isomorphism. Now
congider n': Z'——Z and n: Z—Y. These are homotopy equivalences and zx’7=rF
=fas1. Hence (fui1)« has the desired property and the induction is complete.

We now define X :GQAK" and f: K—Y by flK"=f,. If we give K the weak
topology, we have m, (K, K* #) =0 for i<m.

Hence in the following diagram

T (K, %) N\
NS«

fe im0
7
7 (K% )/ (F)e

all maps are isomorphisms. ///

Lemma 4.3. Let X and ¥ be CW-complexes and assume that g: X—Y is a weak
homotopy equivalence. Then g is a homotopy equivalence.

Proof. As that of lemma 4.2, our proof is divided into two steps.

Step I. Let f: X-——Y 'be a base point preserving map. The map f is a
weak homotopy equivalence iff given any CW-pair (I, L;) and maps a: Ly— X, B:
L——Y with fa=8{Ls, there is a map g: L— X with g|L,=a and fg~p(rel L,).

For the proof of step I, consider the following diagrams, where B**! is the(n+ 1)
~dimensional ball and S™ is #-sphere. Put S"=L, B""'=L

X—-£—-—-)Y

x—t sy
el N\
x Ng |8
AN
* 35" Sty

leads to the conclusion that f, is an isomorphism of homotopy groups by the nulk

homotopic property for any choice of xe=X.

Suppose conversely that f induces isomorphisms in homotopy. Let Z be the mapp—

ing cylinder of f:
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Define F: Lx0LyxI—Z by F(,0)=ji8()) and F{,t)=(a()),?) for IEL,.
Extend F to F: LxI— Z. Let y: L7 be a map given by y()==F(i,1). Then
7Ly =X x1. Produce g: L—s X x1 with g~y(rel L,). Now gl|L,=a, and fg=ng
~zy~f(rel L,) where the last homotopy is given by (I, f)——zF(l,1).

Step TI. Since g: X-——Y is a weak homotopy equivalence, by step I there exists
h: Y——X with gh~1(homotopic) in the category C* whose objects are topological
space with a base point and morphisms are continuous functions which preserve the
base point. Since (Y, %) is a resolution of X, we can similarly find j: X-—Y with
hj~1(homotopy) in C*. Now g~ghj~j, hence hg~1 and % is a homotopy inverse
of g.

Theorem 4.4. Let X be an (#—1)connected based CW-complex of dimension<
on—1, where #2>1, there is a CW-complex W such that @(X) has the same homotopy
type as Q(SW) and ni(X)=rk_,(W).

Proof. By lemma 4.2, there exists a CW-complex Y with (¥)"! a single point
and f: Y— X is a weak homotopy equivalence, i.e., Y~X where “~” means a
weak homotopy equivalence.

By lemma 4.3, Y~X where “~” means the same homotopy type. Then construct
W such that SW=Y inductively by desuspending the attaching maps of the cells of
Y. Since X and SW are CW-complexes with a base point, we see that Q(X)=I(X),
and Q(SW)=~I'(SW) (see [3]). By theorem 3.4, I'(X)=~I'(SW), we have Q(X)=~
QISW).

If n>1, Y~SW is equivalent to SY=~S*W, thus the dimensional restriction impl-
ies that the adjoint map Y-—QS?Y induces an isomorphism in homology in dimension
=2n—-1.

Finally,

::n,\.,(£2_lmi.xEQ"S"“W)
=, (HMQ S W)

= T (QUW)) =7a (W)
Definition 4.5. An(n—1) connected space Y is called afomic if given any self map

f:Y—Y such that fe: H,(Y)— H,(Y) is an isomorphism then fy: Hy(Y)—— Hy(Y)

is an isomorphism. Y is called H-afomic if further, Y is an H-space and we are

fa— 6 5 .
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given only self 7-maps f. Y is called afomic st p, where p is & prime, if ¥ has the
same property with all homology groupse having Z/pZ coefficients. I Y is called H-

atomic at p if further, Y is an H-space and we are given only self-H-maps f.

Theorem 4.6. Q(SX) is atomic at 2 where X has the same homotopy type as
CP", ne=(1,2,---} with base point and Q(SY) is atomic at 2 where ¥ has the same ‘
homotopy type as RP" for n%3 or 7 with base point.

Proof. Q(CP") is H-atomic at 2 for n2>1, Q(RP") is also atomic at 2 for n%3 or
7 (see [8]). Since QQ(SX) is equivalent to Q(X), thus QQ(SCP") is H-atomic at 2
for n>1 and QQ(SRP") is also H-atomic at 2 for #%3 or 7.

The “atomic property” is invariant under homotopy equivalence. If ¥ is 1-connected
and QY is H-atomic (H-atomic at p) then YV is atomic (atomic at p).

By lemma 3.3 7,(/"*X)=2Z*%z(X) which is the free abelian monoid on the pointed
set 7,(X). Since SCP™ and SRP™ are also path connected based CW-complexes,
Q(SCPMy=I'(SCP"), Q(SRP")y=I'(SRP").

Thus, it suffices to prove that =,(Q(SCP™))=0.

7 (QUSCP™) =mo(QQ(SCP™)) :WO(QE_@,Q"S"SCP")
mm(ﬁgﬂ"“S"‘* 1cp)
=7 (QCP")
=mo (L (CP™))
=Z¥m (CP") =0.

Thus Q(SCP™) is atomic at 2. Furthermore, Q(SCP™M) =" (SCP")=I'(SX)=Q(SX)
where X~CP" ne=(1,2,-}.

Thus @(SX) is also atomic. at 2. Similarly, Q(SY) where Y=RP" n3 or 7 is
also atomic at 2. ///
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