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ABSTRACT

The problem of making confidence statements is considered about the means of treatments
with ¢ largest sample values among % available treatments, These confidence bounds are used
in selecting a fixed number of superior treatments, An illustrative example is also provided,

1. Introduction

Suppose experimenters observe k independent statistics Y; with pdf f(y—8;) (i=1, -, k),
where §; is the average treatment effect of the treatment 7, They often question whether they

can rank the treatments according to the ordered values Y, <« <Y of Y;, -, Y.

One way of answering to this question is to construct lower confidence bounds for G_,.y-—
max Ou{t=1,-+, £—1), Bofinger(1983) considered a lower confidence bound for 8,,— max
1sisk-t ls: k-1

8, and Gutmann and Maymin(1985) provided another lower confidence bound for 6(.)~1ma3(
= k-1

8, which was shown to be better than Bofinger’s,
Hsu's(1984) method can provide simultaneous lower confidence bounds for G ..\)— max G
1Sis k-

(t=1,---, k—1). Using this idea, Mengerson and Bofinger(1986) obtained a lower confidence

bound for min  f;— max G,
k-t+1siak laisk-—-¢
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The purpose of this article is to extend Gutmann and Maymin’s result so that simultaneous
lower confidence bounds for @ ¢41)— ,max 6 (t=1,-+, k—1) can be constructed, In Section 2,

we extend the result of Gutmann and Maymin(1985) to obtain a lower confidence bound for

Bieer ) ,max 6.y for fixed ¢, Section 3 treats the case of normal means problem, Based on the
=7 t

result in Section 2, a method of constructing simultaneous lower confidence bounds is explained

in Section 3 with an illustrative example, Comparisons with previous results are also provided,
Finally, it should be remarked that there are several other approaches to ranking the

treatments, and a good reference can be made to Gupta and Panchapakesan(1979),

2. Lower Confidence Bound For Superiority

We assume that Y, ---, Y, are independent with pdf'sf(y—6,) (i=1,--, k), and that f(y - &
has the monotone likelihood ratio (MLR) property in y and @,

In this section, we will construct a lower confidence bound of the following form ;

ﬁ(k7t+l)“ max (}(.'):é’,L(Y(k— z»n"Y(krr)) (21)
I&isk—t

where L is a suitably chosen function according to a given level 1—a(0<a<1). and Y ,<-<
Y, are the ordered Y, ---, Y.

In the construction of a lower confidence bound, the following lemma by Wijsman(1985) ix
useful,

Lemma 2.1. Let g and 4;(i=1,2) be non-negative functions defined on some real intervals
and the four integrals fg;(x) k, (x)dx be positive for 7:=1,2 and j=1,2. Then inequality

f& () b (x)dx/fg(x) by (x) dx 2 [ g (x) hu (x) dx/ (& (x) Ip (x) dx (2.2)
holds if g /g and A /% are monotonic in the same direction,
Now, to define the function L in (2, 1), let H denote the cdf of (Y;—8)— (Y.~ &), Then for
a given 1—a(0<a<1), the function L is defined by
H((L{w)—w)/H{L{w))=a (2.3)

for each w >0, The existence of such a function L satisfying (2. 3) is proved in the next lemma,

Lemma 2.2. Under the assumption of the MLR property of f(y—8), there exists a non
decreasing function L satisfying(2,3) for a given 1-a(0<a<1),

Proof, For each w >0, let us consider a function G, given by

Gulay=H(a—w)/H (a)
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where H is the cdf of (Y, —4) —(Y,—&). Since the MLR property of f(y—§) implies the same
property for the cdf F(y—@), it follows from Lemma 2 1 that for g <@,

Gola) =[:F(y—w)f(y~a1)dy/[:F(y)f(y—al)dy

< [[Fo-w-aydy/ [ F5)fy—a)dy

=Gulm).
Thus, for a given a, the existence of the function L(w) follows from the fact that
alixprw(a) =0 and ,}iIPmG"’(a) =1,

The monotonicity of L is rather clear from the observation that G, (a) is non—increasing in w
for each fixed «,
The next result is an extension of Gutmann and Maymin’s (1985) result,

Theorem 2.1 Assume that the pdf f(yv—#) has the MLR property in ¥ and §, Then we have

inf Pg[ﬁ(k—tﬂ)'— max > L(Yu-ton— Y- 21—a.
® IsiS ket

where L is defined by (2,3) for a given level (1—a).

Proof, Let g denote the inverse function of L so that g(4) >0 for any 4. To maximize the
uncoverage probability, we consider the conditional uncoverage probability

Pg [g(e("EHI)-ngﬁt 0(:’)) = Y(k«zﬂ)" Y(h—:)IA]

where A={Y,2Y, .. 2Y, i=k—t+2,--k, j=1,---, k—1t}, Note that such a conditional
uncoverage probability is symmetric in @, -+, §r-,, and in Gx-¢42, **-, B2, respectively, Thus, we
may assume that 8, ,=---=6,.

Repeated applications of Lemma 2,1 yield that, with ¥ denoting 1—F,

Pg[g(ﬁ(k—zn)"lglgzgt B0) = Yo ern— },(le—t)lA]

[ A F0=0-2Ohcn—00-0) 1 FG—80F 0=buc)dy
[ A F0-6) 1 FO—6)f G—6aen)dy
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Rt
x Fy—0,-g0arts1—0a-))f (¥~ 0rss1) dy
g == o k—t

[ R FG=00f - bu iy

[T FG+00 =00 —8(6x =000 f () dy
[ PO+ - o iy

It follows that the conditional uncoverage probability is bounded above by

H(L(w)~w)/H(L(w))=a

where w =g (8 ++1— 0r-+). Therefore the result follows by observing that the conditioning even:
can be replaced by any other permutation of Y, -, Y,.
It should be remarked that

L{w) =0 for w=1x,y,,

where x ... is the upper a/2 quantile of the cdf H, Hence we can conclude, with confidence
(1—a), that

0“.”Hn>1$1n33<t Oy whenever Y. ,in— Y2 Xa.
nax

3. Application to Normal Means Problem
In this section, we assume the usual one—way balanced model as follows ;
Xo=pite , =1, k;j=1-n

where yu,’s are the treatment effects and ¢,;’s are independent and normally distributed with
mean ( and unknown variance ¢,

and by considering the conditional coverage probability given the pooled estimator % of ¢
Thus the following 100(1-—a)% confidence statement can be made ;

(H-ev— smsakx . ti) /6> V2] nh»(s/ﬁ(X(k—”x)‘“th))/\/?& ) 3.1)

where ki, (w) for w>-( is given by

L7 o)~ ww) /@ (b (w)) dQ, (w)=a. (3.2)
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Here @, is the cdf of /¢ and y=k(n—1). Note that &, (w)=0 for w=1{,,(v), and that the case
of known common variance can be obtained from (3,1) and (3,2) by taking yv= 400,

To implement the confidence statement in (3,1), the values of the function 4, (w) have been
computed for selected values of » and w and for #=0,05 and 0,01, which are available apon
request, For selected cases, the shapes of A, (w) are given in Figure I,

The confidence lower bound in (3,1) reduces to the one by Gutmann and Maymin (1985 for
t=1. In fact the function A, (w)defined by (3.2) is the same as that in Gutmann and Maymin,
and it was not tabulated by them,

The values of A, (w) in(3.2) vs w for @=0, 05
Avy=20 B:y=60
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As an illustrative example, we consider the simulated data by Kleijnen, Naylor and Seaks
(1972), They considered a selection problem, in which a firm is interested in selecting produc-
tion plans with more profits among k=5 possible plans, They ran simulation experiments with
a sample of size #=50 for each plan and assumed that the profit using each plan has a normal
distribution with a common unknown variance, The summary of data is given in Table 3.1,

Table 3.1 . Summary of Profit Data

B plan Mean Profit Standard Deviation
i 1=(2) 2976, 44 175, 83

2=:(3) 2992, 30 202, 20

3==(1) 2675, 20 250. 51

4==(5) 3265, 30 221,81

3= (4) 3131, 90 277.04

From Table 3,1, we observe that the pooled sample standard deviation is §=228. 26 with y=
5x49=245 degrees of freedom and that plan 4 and 5 correspond to the largest and the second
largest sample mean profits, respectively.

First, we consider a situation where only one plan with the largest profit is desired, We
observe from Table 3,1 that

V(X ~ X)) /V26=2.92,

For ¢=0, 05, it was found to be /277 h (2, 92)=0, 24, Thus the 95% lower confidence bound i
(3.1) is given as follows :

(s~ max i) /o >0, 24, (3.3

Mengerson and Bofinger's (1986) lower confidence bound is given as follows :

My max ltu)g()Z(k-t+1,\“X(h——t)“dMszinGA)-

min
k-ot+lnjsk Isisk-1
where g=min(a, ), and a positive constant @“® is tabulated by them, When £=5, ¢t=1 and
a=0.05, the constant is found to be dM®=2 16, Thus in this case the 95% lower confidence
bound by Bofinger and Mengerson is given as follows :

U5~ Max 0,
T 151}

which is not quite useful as a confidence bound since it does not tell how much g, is better than
others, Note that the confidence bound in (3, 3) is strictly positive,

_75_



Next, consider the case where we are interested in top two plans with larger profits,
Mengerson and Bofinger’s result can be applied to make the following statement with 95%
confidence,

min (s, M) —max pm=0 (3.4)
1=%i=3

from which we can make an inference that plans 4 and 5 are af least as good as plans 1, 2 and
3.
Now, consider a method of making joint inference on ps— max . and He—MAX H, To
18ix4 1sis

make a 95% simultaneous confidence statements, we start with 97, 5% confdience lower bounds
individually, In this example, the values of

hy (VA (Xs)— X)) /v28) =, (2,92) and
b (v (Xo—Xis) /v28) = b (3, 06)

corresponding to ¢* = a/2=0. 025 need to be computed, These values have been found to be, for
a*=0,025,

h,(2.92)=0.87 and A, (3.06) =1, 03,
Therefore, we can make a joint inference with 95% confidence as follows :

(tw— max fun)/0>0,17 and (my—max sw)/0>0.21,
1si<4 1<ix3

Thus we can claim the strict superiorities of plan (5) =4 over plan (4) =5, and of plan (1) =5
over plans 1, 2, 3 jointly with 95% confidence, Note that this is a much stronger conclusion
than the inference form(3, 4),

The above method of making a joint inference from marginal inferences is the so—called
Bonferroni method, It can be generalized to make a joint inference at level (1—¢) as follows :
for all t=1, 2,--, k—1

(#(/u: + 1)*1511;1533(4 ﬂ(i))/d>/7/% hy(\/% (AY(kAH»l)hX‘(kft)) /ﬁ&)

where h, is computed with ¢*=¢a/(k—1) replacing ¢ in(3.2).

Finally, it should be remarked that the values of 4, (w) were computed numerically by finding
a root of (3.2) via the bisection method with accuracy up to 107°, In these computations,
evaluation of the intergral was carried out by using IMSL’s subroutine MDNOR and 32 points
Gauss— Laguerre quadrature formula,
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