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ABSTRACT

A new diagnostic statistic for detecting outliers and influential observations in linear models
is suggested and studied in this paper, The proposed statistic is a weighted sum of two
measures ; one is for detecting outliers and the other is for detecting influential ovservations,
The merit of this statistic is that it is possible to distinguish outliers from influential observa-
tions, This statistic can be used for not only regression models but also factorial design models,
A Monte Carlo simulation study is reported to suggest critical values for detecting outliers and
influential observations for simple regression models when the number of observations is 11, 21,
31, 41 or 51,

1. Introduction for Diagnostic Measures

Recently a great number of research papers have been published on the area of outliers and
influential observations for diagnostic purposes, and there still remain many unsolved problems,
It is known that observations of, in the opinion of the investgator, standing apart from the bulk
of the data have been called “outliers”, It is also known that observations are judged as
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“influential” if important features of the analysis are substantially altered when the observatioas
are deleted, A great deal of measures have been proposed to detect outliers and influential
observations for regression models and/or factorial experiments,

Suppose the linear regression model can be written as

y=XB+e¢ (1.1)
where y is an n X 1 vector of observations, X is an #Xp full rank matrix of known constans,
B is a p vector regression coefficients and ¢ is an nx 1 vector of randomly distributed errors
such that E(g)=0 and V (¢)=Is°, In fitting the model (1.1) by least squares, we ususally
obtain the fitted or predicted value from j:: X? where éz (X’ X)'X’y, From this, it is simpie
to see that

>

yv=Hy (1.2)

=

e=y—y=(I-~H)y (1.3)

e

where H =X (X'X)"'X" is the hat matrix and ¢ is the residual vector,
Note that i is the perpendicular projection of y into the subspace generated by columns of X,
Since, H is symmetric and idempotent, we can write

hi= f:;? hf,« (1. 4)

and it is clear that 0<h;<1. In this case, rank(H)=rank(X)=p and hence, trace(H):- p.
The average of diagonal elements 4;; of the hat matrix, then, is p/xn. Experience suggests that
a reasonable rule of thumb for large h;; is h;>2 p/n. Thus we determine a high leverage point
by looking at the diagonal elements of H and paying particular attention to any design point for
which h;;>2p/n. We may say that if A, is large, the data point may be considered as
influential,

For a measure of an outlier, we often use the standardized residuals

Vi:*;/i—__—‘—i? (1.5)

where s:,/’_e—’éﬂ;z :2;)' . However, s? tends to overestimate ¢ when there exists an outlier, For
such case, s& is a better choice as an estimate of ¢*, were s3, is the residual mean square e-ror
of n—1 observations after discarding the ith possible outlier case, Then we obtain the student-
ized residual

*

(1.6)

;
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which is ¢ -distributed with (n—p—1) degrees of freedom,
A useful measure of influence which is called the Cook’s statistic

Di=(B—An)' X' X (B—Bin) ] b5 (1.7

is obtained by Cook(1977, 1979), where ,_Q,, is the least squares estimate of 8 obtained hy
deleting % rows and % observations indexed by / from X and y, respectively, and s® is the least
squares estimate of ¢? in the full model, If there is a single observation deleted, D, is written
as D;, Cook suggests that if the observed D; is equal to or greater that F(p, n—1,; a) where
a is less than (. 5, then y; may be significant as an influential observation,

Andrews and Pregibon(1978) suggest a statistic using the ratio

_ (n—p— k) sHI X" (1 Xu) )
(n—p) s X' X] ’

R,

for identifying subsets of % influential cases, The rationale for this measure is based on the idea
that the deletion of an outlier in y will result in a marked reduction in the residual sum of

squares and the deletion of a remote point in X will produce a similar change in [X'X|, This

quantity is dimensionless, Geometrically 1— (R,)% corresponds to the proportion of the volume
generated by (X :y) attributable to the indexed % observations, Accordingly, small values of
R, are associated with deviants and/or influential observations,

For multiple outlier case Gentleman and Wilk (1975b) suggest Q.

Qi = RSSc— RSSm (1.9

where % indicates £ outliers, RSSc is the residual sum of squares when the complete set of
original data is used to fit the specified model, and RSSm is the residual sum of squares when
the extreme observation are regarded as missing,

We write the basic model

E(g)=E[i’] = [i]ﬂ (1.10)

where X, is an (n—k) Xp matrix which contains no outliers, and X; is a £Xp matrix whica
contains % outliers, Then we can express €, as

Q= Qlu+ Qn
=g, e +e1’ Xx(Xx‘Xx)—lAXl;é’x (1,11)

where Q. =e¢;’ €, Q= e’ X (X' X)) ' X, and

A
~

i
i
—

I
N
It
~
|
=
e

‘e

- 20 -



:[I—_anl:glj [i] (1.12)

Here, R=X(X'X)'X’ and R,;=X, (X' X)X, It is not difficult to show that
Qu=F-P'X X (B-p (1.13)

where ,§: (XI’Xl)"‘Xl’_yl, Note that if @, is large, the k observations may be outliers, anc if
@ is large, the k& observations may be influential observations,

2. Proposition of a New Statistic

For regression models, the standardized residual »; and the studentized residual »* only serve
to detect outliers, while such measures as h&,;, the Cook’s statistic [} are only used for detecting
influential observations, Such measures as the Andrews—Pregibon’s R, and the Gentleman and
Wilk’s Q. may detect the observations which are outliers and/or influential observations,
However, in practice we want to know which observations are outliers and which observations
are influential, Statistics which can distinguish outliers from influential observations have not
been suggested,

As mentioned in the previous section @, is decomposed into Q. and Q,,, where @, ma.nly
detects outliers and Q.. mainly detects influential observations, However, the magnititude of
Qi and @ heavily depends on the unit of observations, Hence, to make @, and Q.. scale
invariant, we need to divide them by some scaling factor, We propose the following statistic
which is a weighted sum of @, and &,., divided by some scaling factor

WQi=wlu/(s.f.) + (1—w) @/ (s.f.) (2.1)

where w is the weight factor, 7,¢. 0<w<1 and s, f, is a scaling factor,

Now we choose an appropriate scaling factor for detecting outliers and influential observa
tions, The appropriate scaling factor we want to propose is ks, where s& is the residual sum of
squares of the reduced model which does not include the observations indexed by I,

Note that when w=0, WQ. becomes Q../ksd which is similar to the cook’s D, in the equation
(1.2). When w=1, WQ, becomes Q,,/ksé which is the sum of squares of the largest ¥ residuals
divided by ks}. Hence, Qu/ks§ can detect k outliers, When w=0,5, WQ. becomes Q./ ! ks,
which behaves like the statistic @Q.(it detects the same points as @.). However, the most
important point of this statistic is that as the weight changes from 0 to 1, it can show the
influential observations at first and then gradually changes to outliers, Therefore, we can ezsilv
distinguish outliers from influential observations,

Here we are interested in the probability distribution of the maximum value of WQ,., for
convenience, we may write this as max W@Q. However, it is difficult to obtain the exact
distribution of max W, Hence, in this paper we want to show the empirical probability
distribution of max W@, by Monte Carlo simulation, and we will provide the critical values for
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some given significance levels which can be used for hypothesis testing of outliers,

Next, it is of interest to compare the diagnostic measures with the proposed statistic, The
value of @, consists of two parts, the outlier part and the influential part, However, since the
value of @, seems to be dominated by the outlier part, Q. is categorized as a measure of
detecting outliers in Table 1, According to Table 1 each of all the diagnostic statistics is some
function of 7, »* and A;;, And WQ. can be represented in a similar form, When w=0, WQ.,
is h,7:*%, when w=0,5 WQ, becomes 7,*?/2 and when w=1, WQ,= (1—h;)r.*2,

Table 2 shows the relationships among D, K;, @ and WQ., when the number of outliers or
infulential observations are greater than 1,

Table |, Comparisons of Measures for Detecting an Outlier and/or an influential observation

. Measures for detection of an L
Mesures for detection . . . Proposed Statistic
influential observation
) e L Bzl 1. When w=0,
7= . hi;=leverage
. S\/l—jz.', g WQ= h.ivi*?
e b 2. When w=0,5
¥ = - “‘7‘=‘T‘ Di=——7—" - iz
2.7 Si'1— 2. b (1—h) " WQh=r1,*%/2
3. kas ¥ ZS(,-)V," 3. Ri_ i 3. When w=1.0
n—p W= (1—hy;) r*?

Table 2. Comparisons of Measures for more than 1 outlier and/or influential observation

Mesures for detection of Measures for detection of

. . . Proposed Statistic
outliers influential observation P

L Qu=¢. (I -Rxu) e,
=e, ¢, +e,/ X (X'

L D= WB) XX (§=fn) | 1. When w=0.0
b WQ= (B o) Xw X(n(ﬂ Buw)

X)) ' Xw e i
| X Xl XaXp) ' X
2. Ri= Xt e (X o' Xo) w'e
- X‘ X‘ —
| ks
=(1— )II Rzz] 2. When w—O 5
WQ.— ks(
3. When w=1,0
WQ,= e,;;,z
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3. Example

The statistic max W@, will be obtained from the analysis of a set of 21 observations(x, v)
which is similer to the data set given by Mickey, Dunn and Clark (1967), The observations
appear in Table 3 and are plotted in Figure 1, A straight line regression model is fitted to the
full set of data and then to the 20 data points remained when each observation is deleted in
turn, Our test statistic max W@, is obtained where the scale factor(s, f.) is &s§ and k is the
assmed number of outliers, Table 4 shows the weights ranged from 0 to 1 and max W@),, and
the deleted observation number and its corresponding significant probability, When the weights
are small (0<w <0, 3), the number 18 is deleted, However, when the weights become larger
(w>0,3), the deleted number changes from 18 to 19, The reason for this is that the residual
for observation 19 is too large than any others,

|
. 19 —_— line fitting to full data set
120 —~-- line fitting to 20 data points excluding No, 18,
\\ . -------  line fitting to 20 data points excluding No, 19,
110 - \
1004 k\
i . “~
\{
90 - .
3 . : \ ‘.\\\ \\\ ~ -
80 - N ~
N .
2 T
70- -l\\\\ o “
.\\\ -~ ~
60 - N\ I
\\ \_\\ \ -
AN ~.
50 NN
40 - \\\ \\‘
= 18
<2 .
[ T T T T A A — R T T T T

10 20 30 40 50 60 70 80 90

Figure 1, Plot of Example Data
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For the removal of two cases, the results are summarized in Table 5, The results show that
the deleted ovservations are varying with respect to w, It seems that the (2, 18) observations
are most influential and (3,19) are outliers, Here we also note that the significant probabil-
ities are not small, therefore in this procedure the type I error may be greater than the often
used values of 0,05, and 0, 01, Based on the results of this example, we suggest that,to detect

Table 3. Age at First Work(x) and Gesell Adaptive Score(y)

Case x y Case x y
1 15 95 11 7 113
2 26 71 12 9 96
3 10 83 13 10 83
4 9 91 14 11 84
5 15 102 15 11 102
6 20 87 16 10 100
7 18 93 17 12 105
8 11 100 18 42 35
9 8 104 19 17 121

10 20 94 20 11 86
21 10 100

Table 4, Detected Observation and Significant Probability when one point Detection for Example Data

given weight max, W@, deleted observation significant probabil:ty
0.0 2.609 18 0.07
0.1 2,480 - 18 0.09
0.2 2,942 19 0,08
0.3 4,75 19 0.04
0.4 5,208 19 0. 06
0.5 6. 341 19 0.04
0.6 7.474 19 0,04
0.7 8. 607 19 0. 04
0.8 9. 740 19 0.03
0.9 10, 873 19 0.03
1.0 12, 005 19 0.04
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the outliers and influential observations, the significance level ¢ may be set to some big
values such as ¢=0.1 or 0,2 or even greater values, Table 6 shows the detected points
when other statistics are used in this example,

Table 5. Detected Observations and Significant Probability when Two Point Detection for Example

given weight max, WQ. deleted observation significant probability
0.0 3.108 2,18 0.04
0.1 2,881 2,18 0,06
0.2 2.653 2,18 0.14
0.3 3,012 18,19 0,18
0.4 3. 694 18,19 0,20
0.5 4,376 18,19 0.19
0.6 5.161 3,19 0.19
0.7 5. 986 3,19 0,17
0.8 6. 810 3,19 0,14
0.9 7.635 3,19 0.15
1.0 8. 459 3,19 0,17

Table 6. Detected Observations for Example in Other Statistics (the values of test statistics for detected
points are given within the parentheses)

Statistics Detected Points :
19 (12. 68 |
Qx e — 1
18.19 ( 8.75) g
| ‘ 18 (0,27 ﬁ
R, L .
| 2,18 (0.0 ‘
18 (3.268) |
j D,
; 2,18 (11, 29)
— . — i ——
7, | 19 ( 2.79)
r.‘ | 19 ( 3.55)
h, ‘ 18 ( 0,65 ‘
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In one point detection case, the detected ovservation is the number 19 when using the outlier
detecting statistic Q., 7; and #* while the number 18 is detected by using the statistics of
influential observations such as D;, R;, and the leverage ;. From these results, the number 19
is the most outlying case and the number 18 is the most influential and remote point which has
been already shown in Table 4,

For two points detection ®; and D, detect the numbers 2 and 18 where Q. detects the numbers
18 and 19, In Table 5 the results include these points and in addition, when w >0,5, the points
3 and 19 are detected .

4. Probability Distribution of the Proposed Statistic by Monte Carlo Simula-
tion

There are so many possible cases we have to consider for simulation such as simple reyres-
sion, multiple regression, factorial experiments, and so on, However, we only simulate the
simple regression case in this paper,

We simulate the simple regression case when the design points are given in Table 3. The
values of the dependent variable y are generated with the intercept 20 and the slope 2,0 using
the normal random variate generator GGNML in IMSL subroutine, The simulated crizical
values for the given data set are given in Table 7(A), And the empirical probability density
function of W@, is plotted in Figure 2, From Figure 2 the distribution of W@, is skewed tc the
right when the weight w is small and it moves to the right hand side when w becomes larger
and it tends to be symmetric,

We have obtained these results by simulation runs, employing the following procedure,

(1) The 21 values of y are generated using the intercept 20 and the slope 2. 0 where the error

terms are generated by the normal random variate generator with standard deviation 5,0,

(2) For one point detection the reduced residual sum of squares is calculated from Q.= e;’

(I —K;,)"'e,, In one point detection case, it is easily obtained using the leverage 4, and
the residual of the detected point in the full model ¢;, i.e. e:?/(1—hy). For two pcints
detection, the reduced residual sums of squares can be obtained by the partition of hat
matrix H,

(3) Then, from the reduced residual sum of squares, the WQ, is obtained by using the scaling

factor ksgf.

(4) For the generation of a set of data y, the maximum W, is obtained from <n> cornbi-

nations, k

(5) The simulation is repeated until 1, 000 values of WQ, are obtained, and percentage points

are then found,

Next, the design sets B,C, and D in Figure 3 are given to compare these critical values,
whether they are design—dependent or not, The data sets B,C, and D are various dispersion
types of independent variables as shown in Fugure 3, The dispersion of A is skewed to the right
and that of D is skewed to the left where B and C are evenly distributed, From Table 7, we
can find that the critical values are almost equal when w<(,2, Hence, we know from these
results that the distribution of Wg), is invariant to the type of dispersion of the design points,
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w=0,00
0. 41 0,44
0. 31 0. 34
0.2 0, 24
0.1 0. 14
0 0
(A) (B)

Figure 2, Empirical Probability Distribution of W@, with Various Weights in Simple Regression
When the Number of Data Points is 21. (A) for One point Detection (B) for Two Points

Detection
X X
X X x
X X X X X X X X X
XXXKXX X X XXX X X XXXX XXX XXXx XX XX
B S + e — + + +
10 20 30 40 10 20 30 4{)
(A) (B)
X X
X X
X X X X X X X X X
X X XXX X X XXX XXXXXXX X X X XXX XXX X XX
e e e —+ + e
10 20 30 40 10 20 30 4()
(&) (D)

Figure 3, Scatter Piot of the Data Sets (A) — (D) When the Number of Data Points 21,
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Next we want to show whether the number of design points has impact on the critical points
or not, The randomly chosen design points for the number of points 11, 31, 41 and 51 are
investigated, We obtain the critical values using the same routine from (1) through (5). Table
8 shows the critical values for the data sets with the number of points 11 to 51, Especially, in
the case of 21, the tabulated values are the average of four critical values in Table 7, It is
observed that for small w the critical values are in some degree shifted to smaller values when
the number of points increases, On the other hand, for large w, the critical values are
somewhat shifted to larger values when the number of points decreases, Hence we note that the
distribution of max W@, under the null hypothesis(H, . There is no outlier), has the larger
variance when the number of points are smaller,

In two points detection, the critical values for the data sets (A) and (C) are given in Table
9. The values are almost equal except when w=0,0 and 0, 1, Table 10 gives the critical values
for two points detection in the data sets with the number of points 11 to 51 and it show the
similar pattern to one point case,
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