불순물에 의한 III-V 화합물 반도체의
박막혼합 현상과 그 응용

박효훈

목차

I. 서론
II. 다층박막의 조성 혼합 양상
III. QWH Laser 제조에의 응용
IV. 조성 혼합 기구
V. 결론

* 신소자재료연구실 선임연구원

〈요약〉

III-V 화합물 반도체에서 불순물에 의한 다중박막조직의 조성 혼합현상과 quantum well heterostructure laser 제조에의 응용기술을 소개하였으며, 지금까지의 조성 혼합기구로 제안된 모델의 타당성에 대해 상세히 논의하였다.

I. 서론

III-V 화합물 반도체는 함금조성에 따라 다양한 밴드갭 에너지를 얻을 수 있기 때문에 양자 웜물구조 또는 오차력을 기본구조로 하여 광전소자 및 고속 트랜지스터 제조에 널리 활용될 전망이다. 이들 소자들은 대부분 매우 급격한 이중계면의 형성이 필수적이며, 그 계면의 급격성에 따라 분석전류, 광전효율, 전자이동도 등의 소자특성에 결정적인 영향을 미치게 된다. 따라서 보다 유리한 계면을 갖는 에피층 성장을 실현하기 위해 MOCVD (Metal Organic Chemical Vapor Deposition) 또는 MBE (Molecular Beam Epitaxy) 등에 의한 성장기술이 개발되고 있는 실정이다.
이러한 성장기술에 의한 소자제조 공정에서 금격한 개편의 형성과 유지에 심각한 장애가 되고 있는 것 중 하나는 열적 활성화된 상태에 진행되는 박막간의 조성 혼합문제이다. 즉 조성자 같은 박막 조직은, 도핑처리를 하지 않은 상태에서는 강시간의 고온 열처리에서도 안정하게 유지될 수 있으나 적정량의 불순물이 존재하게 되면 비교적 짧은시간에도 박막조직이 놓리운 속도로 파괴된다. 예로서 \textit{Al}, \textit{Ga}, \textit{As−GaAs} 조성자에 \textit{Si}를 확산시키면, \textit{Si}이 확산된 깊이까지 각 충간의 원소들이 상호 혼합되어 조성자 구조를 상실하고 완전한 조성의 \textit{Al}, \textit{Ga}, \textit{As} 합금으로 변하게 된다.[10]

박막혼합현상은 여기저기 다른 불순물과 합금계에서도 전반적으로 관찰되고 있으므로,[11][26] 혼히 이를 IID(Impurity Induced Disordering)으로 표현하여 III−V 화합물의 고유한 특성을 하나로 취급되고 있다.

IID 현상은 계면의 급작성을 유지하는데 해가 된다. 물론이나, 한편으로는 새로운 구조의 다층박막 소자를 제조하는데 유용하게 활용될 수 있다. 즉, 2차원적으로 단조로운 조성자 또는 MQW(Multi Quantum Well)조직은 불순물의 국부적인 주입으로 선택된 영역에만 박막중인 고립된 다양한 형태로 변화될 수 있다. 현재 이러한 응용연구로 상당한 진전을 보이고 있는 소자는 QWH(Quantum Well Heterostructure) laser이며, 이것 소자에서 빛의 파도의 매듭공정이 IID기술로 간단히 처리되고 있다.[26][49] IID 현상은 또한 확산거동 자체로도 흥미있어 III−V 반도체에 대한 확산연구를 연구하는 사람들에게 상당한 관심이 집중되고 있다. 앞으로 계면제어 기술의 중요성이 대두됨에 따라 계면에서의 원자거동에 대한 학문적인 이해가 더욱 절실히 요구될 것이므로 본고에서는 불순물에 의한 박막혼합현상과 이의 응용에 대한 연구동향을 소개하고, 아직 미흡한 수준이나마 해석되어 있는 IID의 기본기구에 대해서도 충분히 논의하고자 한다.

II. 다층박막의 조성혼합양상

불순물에 의한 조성자 혼합현상은 1981년 Laidig[11]가 Zn확산으로 AlAs-GaAs 조성자층이 혼합됨을 보여준 후 여러가지 불순물과 합금계에서 관찰되고 있다. 조성자 혼합의 전형적인 양상으로 ⟨그림 1⟩의 TEM사진을 소개한다. 이 시리온 모션결로 성장한 Al\textsubscript{0.6}Ga\textsubscript{0.4}As-GaAs 조성자[26]에 Si\textsubscript{2}N\textsubscript{4}막을 부분적으로 입혀고 그 위에 \textit{Si}을 증착시킨 후 열처리 (850°C, 10 h)한 것이다.

그림에서 볼 수 있듯이 Si\textsubscript{2}N\textsubscript{4}에 보호된 영역(그림의 우측)에는 조성자 층이 명확하게 남아 있으나, \textit{Si}이 확산된 영역 (좌측의 원 부분)에는 박막중이 완전히 혼합되어 있다. 이 혼합된 부분의 결정양상은 그대로 유지되며, Al과 Ga의 상호확산으로 합금조성만 Al\textsubscript{0.6}Ga\textsubscript{0.4}As-GaAs 에서 Al\textsubscript{0.4}Ga\textsubscript{0.6}As로 화한 것이다.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{figure1.png}
\caption{외부에 Si 확산처리한 (850°C, 10 h) Al\textsubscript{0.6}Ga\textsubscript{0.4}As-GaAs 조성자층의 TEM사진. 왼쪽 원부분이 Si확산된 영역이며 오른쪽이 Si\textsubscript{2}N\textsubscript{4}막으로 보호된 영역임.[2]}
\end{figure}
이러한 현상은 불순물을 이온주입하여 열처리한 절편에서 나타나는데 심지어 활성성 이온인 Kr의 주입(26)에 의해서도 일어난다. 그러나 가병운 원소인 Be(29)와 B(25)의 이온주입에서는 IID효과가 나타나지 않는다고 보고되어 있다. 지금까지 IID가 관찰된 불순물과 합금계를 정리하면 표 1과 같다. 이들 합금계의 혼합속도는 불순물의 종류와 농도에 따라 많은 차이가 있으나, 불순물을 도핑하지 않은 III–V 화합물의 자체 확산속도(52)(60)에 비해 현저히 빠르게 나타난 것이다. 혼합효과가 가장 큰 Zn의 경우, AlGaAs-GaAs 계에서 Al-Ga의 상호확산 속도는 Zn의 확산으로 10^{-10}배까지 급증된다.(16)

이러한 혼합효과는 원자이동을 촉진시킬 수 있는 다른 여러 방법 (고온열처리,53,59 As 분위기 조절, dielectric encapsulation(60) 등)에 의한 것보다 강력한 것이다. 혼합효과는 각 불순물에 따라 적절한 가온에서 이하에서는 나타나지 않는데, 600~800°C 범위에서 대체로 10^{18}~10^{19}cm^{-3} 이하의 농도일 때 그 효과가 현저히 희미한다.(51)(16)(25)(26) 그림 2는 이러한 경향을 SIMS분석으로 보여준 것으로 AlGaAs-GaAs 초저감사에 Si을 이온 주입한 후 열처리했을 때 초저감사의 주기성을 상실한 것과는 Si 농도가 높아 10^{19}cm^{-3}인 경계에 미루르고 있다.

IID된 조직의 결정특성을 연구하기 위해 photoluminescence(8)(13)(16)(17)(20) 및 X-선 회절특성(16)을 분석한 결과도 많이 보고되어 있다. 특성의 전형적인 변화는 박막 혼합이 진행될 때 photoluminescence 피크의 폭이 넓어지고, 피크의 위치가 혼합층의 밴드갭 에너지 폭으로 이동되며, 몇개의 주변 피크들이 분리되어 나온 것이다.16,17 X-선 회절 패턴에서는, 초저감사조직의 주기성이 상실됨에 따라 위성피크 (satellite peak) 등의 강도가 떨어지게 된다.16 이러한 photoluminescence 및 X-선 회절 특성변화는 불순물 없이

<table>
<thead>
<tr>
<th>표 1</th>
<th>조성혼합이 관찰된 불순물과 합금계</th>
</tr>
</thead>
<tbody>
<tr>
<td>주입방법</td>
<td>불순물</td>
</tr>
<tr>
<td>열처리</td>
<td>Si</td>
</tr>
<tr>
<td>또는</td>
<td>Ge(30)Sn(25)</td>
</tr>
<tr>
<td>정제조합</td>
<td>Zn</td>
</tr>
<tr>
<td></td>
<td>Ge(30)Sn(25)</td>
</tr>
</tbody>
</table>

<그림 2> Si 이온주입후 열처리한 Al_{0.5}Ga_{0.5}As-GaAs 초저감사에서의 Si 및 Al의 SIMS Profiles.5

보다 고온에서 열처리 되었을 때와(24)(40) 거의 유사하게 나타나므로, 16,18 불순물의 영향은 결정에 따른 영향을 주지 않고, 조성적인

88
(그림 3) Si와 Be를 도핑한 AlAs-GaAs 채격자에서의 Ga의 Auger Profiles. (a) as grown, (b) 780°C에서 2시간 열처리한 사면.212

(그림 4) Si를 이용한 후 급속 열처리한 (970°C, 10sec) AlAs-GaAs-GaAs 채격자내의 Si와 Al의 SIMS Profiles.9

혼합반을 야기시키는 것으로 이해되고 있다.

한편, 볼슨물에 의한 계면혼합을 저지시킬 수 있는 방안이 연구되고 있는데, 그 중 하나로 Si 도핑치 Be를 이중도핑하여 혼합효과를 저지시킨 결과가 보고되고 있다.212 (그림 3)이 그 결과로 AlAs-GaAs 채격자에서 Si를 균일하게 도핑하면서 간헐적으로 Be를 동시 도핑한 후 열처리 했을 때 (765°C, 2h), Be이 도핑된 부분에는 채격자 조밀이 비교적 원활하게 남아있다. Be의 단독 도핑시 (MBE 생산 중 도핑) 고능도에서 혼합효과를 보이며,26 Be(P형 볼슨물)과 Si(N형 볼슨물)의 동시 도핑으로 혼합효과가 저지되는 것은 흥미있는 결과이다. Sn도 도핑한 AlGaAs-GaAS 채격자에는 Be를 이용하여 Sn에 의한 혼합효과를 저지시킨 결과가 있다.25 B는 Ga과 같은 III족 원소로 Ga자리에 들어갈 경우 전기적 특성에 직접적인 영향을 주지 않으므로 IID 저지를 위한 유용한 원소가 될 것으로 추정된다. 혼합효과의 저지는 또한 급속열처리 (rapid thermal annealing)에 의해 서도 달성시킬 수 있다.9 (그림 4)는 (그림 2)에서 보여준 것이 동일한 조건에서 Si 이용한 후 급속열처리한 (970°C에서 10초) 것으로, 모에서 열처리한 (그림 2)에 비해 Si 확산깊이는 거의 같으나 채격자의 주기성은 거의 손상되어 있지 않다.

시면의 표면상태 또한 혼합효과에 큰 영향을 미치는데, SiOₓ를 encapsulation 하거나 보호막 없이 As 분위기에서 열처리 했을 때 보다 SiₓNₓ로 encapsulation했을 때가 혼합정도가 현저히된다.8 이 경우는 볼슨물 없이 열처리할 때도 같은 형태 나타나는데, 이는 SiOₓ encapsulation 되어 있거나 보호막 없는 경우 As 과정 압력에서 Ga vacancy가 생성되어 Al-Ga상호확산을 촉진시켜 주기 때문인 것으로 해석되고 있다.8,16

III. QWH Laser 제조에의 응용

IID 현상의 응용은 buried QWH laser 제조에 성공적으로 달성되고 있다. 이 제조기술은 1981년 Illinois 대학에서 특허로 출원된 후, 이 대학과 Xerox Palo Alto Research Lab, 일본의
Optoelectronics Joint Research Lab. 에서 활발히 연구되고 있다. (그림 5)는 IID 기술로 제조된 laser 조치를 대표적으로 보여주는 것으로 MQW 활성층을 Si 확산으로 고립시킨 것이다. 이 조치는 MQW 활성층, AlGaAs confining layer, GaAs contact layer 등의 기본구조를 성장시킨 후, Si,N,스트라일을 형성시킨 위에 Si 공급원으로 수백 Å 두께의 Si막을 증착시키고 열처리 (825°C, 34 h)하여 얻어진 것이다. Si,N,로 보호되지 않은, 스트라일 양측면에는 Si 확산으로 모든 층들이 혼융되어 있다. 여기서 Si의 확산은 값이 방향 뿐 아니라 확산방향으로도 진행되기 때문에 혼합된 영역과 잔존된 영역의 경계는 포물선을 그리게 된다. 이러한 laser는 AlGaAs confining layer의 Al조성을 활성층의 AlGaAs barrier 보다 높게함으로써 혼합된 영역의 밴드갭이 잔존 활성층보다 크게하여 광적 및 전기적인 억류효과를 얻을 수 있다.

활성층의 고립공정은 열적확산[29][30][31][33][41][47][48]이나 이온주입[29][42][43][46]으로 행해지고 있으며, 혼합 배경체는 기판의 P, N형에 따라 각각 Zn[2,9,32][46][48]와 Si[33][41][42][45]이 주로 사용되고 있다.

IID를 활용한 laser 제조방법의 가장 큰 장점은 일반적인 BH (Buried Heterostructure) laser 제조방법(mesa etching 방법[61])에 비해 평도파로 정의를 한계를 연장할 수 있다는 것이다. 두 단계의 에피생장이 필요한 mesa etched BH구조는 LPE(Liquid Phase Epitaxy) 방법으로 개발되었으나, 이를 MBE나 MOCVD방법으로 성장시키는 용이하지 않다. IID방법으로는 1-3μm 가까이의 매우 투명한 스트라일 구조의 laser를 성공적으로 제조하고 있으며, multi-stripe laser[29][30][47] 제조까지 발전되고 있다. Laser 발진특성을 또한 kink 없는 단일 모드로 상온에서 연속발진 특성을 얻을 수 있으며, 문턱전류는 현대수준에서 3-4mA까지 낮추는 보고도 있다.

(그림 5) (a) SI 확산으로 활성층을 고립시킨 Al-GaAs-GaAs MQW Laser의 개략도.
(b) Laser 단면의 SEM 영상[40]

이러한 QWH Laser 제조 기술에는 아직 개선되어야 할 몇 가지 문제가 있다. 그 첫째는 혼합된 구역과 잔존 활성층사이의 shunt영역이 넓기 때문에 전류صلة이 크고 광적 억류가 약하게 되는 것이다.[30] 여기서 전류صلة 문제는 혼합된 영역에 다시 proton bombardment을 하여 도파를 낮은 저항으로 개선시키고 있다.[30][39] 또 다른 문제는 IID를 위해 비교적 고온에서 장시간 열처리를 거치게 되는데, 이때 다른 dopant들의 확산도 수반된다는 것이다. 예로서 Zn를 도포한 P형 confining layer에 Si를 확산시켜 혼합시킬 때, 활성층 내로 Zn가 확산되어 발진특성을 저하시키게 된다.[36] (여기서 Zn농도가 낮아 Zn제분포에 의한 활성층의
혼합은 거의 없다.) 이러한 dopant의 재분포 문제는 Zn 대신 재분포 경향이 적은 Mg를 dopant로 사용하거나, P형 confining layer 아래에 보다 높은 농도의 N형 confining layer를 설정 토록하여 그 피해를 줄이고 있다.[36] 이밖에 QW 혼합을 위해 고농도의 Si를 확산시키면, 결정표면 기계에서 활성층 위로 가로질러 전류가설이 생기는 문제가 있는데, 이는 Si 환산 후 Si 농도가 높은 표면을 예청해 내고 넓은 스타일된 영역을 걸쳐 Zn을 알게 확산시킴으로써 해결하고 있다.[3] 이러한 공정은 Si₃N₄ 패턴 형성과 기판표면 에칭 등이 반복되는 번거로움이 있기 때문에, 최근에는 조성혼합을 유도할 Si 공급처로서 QW활성층 내에 AlGaAs barrier 대신 (Si₆), (GaAs), barrier를 성장시키는 방법이 개발되고 있다.[41][45] 이 방법에서는 QW를 성장한 기판표면에 SiO₂층을 증착 및 패턴 형성하여 As 과정 압력에서 열처리함으로써 SiO₂/GaAs 계면으로부터 공급되는 Ga vacancy에 의해 SiO₂ cap 아래의 (Si₆), (GaAs), QW 조직을 혼합하게 한다. 여기서 SiO₂를 압착하지 않은 표면 아래의 QW는 거의 혼합되지 않는다. 이 방법의 가장 큰 장점은 Si양을 낮은 농도로 조절할 수 있다는 점인데, 결과적으로 QW와 혼합영역 사이의 구절을 차이로 적정수준으로 조절할 수 있어 multiple-stripe laser 실현을 보다 용이하게 한다. Insulator 패턴형성의 번거로움을 해결하기 위한 최근의 다른 노력을로서 Ga[42] 또는 Si[43]를 forced ion beam으로 이온 주입하는 시도도 있다.

이상과 같은 확산공정의 여러 가지 개선으로 submicron의 극히 좁은 스타일된 구조를 갖고 풀타입성이 1mA 이하인 laser 제작이 곧 실현될 것으로 예상되고 있다. 한편, Ga, Al 또는 As 등의 주입은 III-V 화합물에 전기적 변화를 야기시키지 않으므로, 향후 HEMT(High Electron Mobility Transistor), HBT(Heterojunction Bipolar Transistor), 초격자 등의 이중개면 구조를 갖는 화합물 반도체 집적회로 제작시, 각 단위소자간 분리에도 이들 원소의 주입에 의한 IID 기술이 활용될 가능성이 있다.

IV. 조성혼합기구

IID의 기구에 대한 해석은 III-V 소자체조에 활용하기 위한 기술적인 이유에서 뿐 아니라 원자 확산кер동을 이해하기 위한 학문적인 의 미에서도 상당한 홍미를 끌어간다. 즉, 소량의 불순물로 III-V 화합물의 자체확산 속도를 엄청나게 증가시킬 수 있는, 화합물 구성원소와 불순물 사이의 강한 상호작용이 무엇인가를 설명하기 위해 원자커동에 대한 새로운 이해가 필요하기 때문이다. 이러한 관점에서 화합물 반도체의 원자확산을 연구하는 사람들의 관심이 집중되고 있으나, IID 기구해석에 활용함한 실험적인 결과가 제한되어 있기 때문에, 지금까지 IID기구로 제안된 기존 불순물 확산 model을 정성적으로 수정한 수준에 있는 설정이다.

IID에 대한 초기의 해석은 화합기구가 비교적 정립되어 있는 Zn에 대해서 먼저 시도되었다. GaAs 및 관련 화합물에서 Zn의 확산은 다음 반응식으로 표시된 substitutional-interstitial 기구에 의한 것임이 정설로 받아들이고 있다.[45]

\[
Zn^+ + V_{Ga} \rightarrow Zn_\text{Ga} + 2\text{h}^+ \quad \cdots \cdots (1)
\]

여기에 Zn⁺, Zn_\text{Ga}, V_{Ga} h⁺는 각각 Zn interstitial, substitutional, Ga vacancy와 hole이다. 이 반응에 의하면, Zn 존재로 Ga 원자이동의 매개체인 V_{Ga} 농도의 증가가 없다면 Ga 원자이동의 축진될 이유가 없으며, 오히려 Zn 주입으로 V_{Ga}가 소모되어 Ga 이동이 저지될 가능성이 있다. 이러한 문제로 Laidig[42]는 다음 반응

\[
Zn^+ + V_{Ga} \rightarrow (Zn,V_{Ga}) + 2\text{h}^+ \quad \cdots \cdots (2)
\]
와 같이 Zn<sup><i>n</i><sup>+</i>와 V_{Ga}는 전기적 pair를 형성하며, 이 pair의 붐은 이동으로 III족 원소의 상호환산이 촉진된다고 하였다.

Van Vechten^[10]은 Laidig의 제안^[12]에 기초를 두고, Ga 또는 As vacancy를 통한 최인접 원자의 혼합에 의해 결정되는 격자원소 이동과정을 상세히 묘사하였다. 이 model에 의하면 vacancy를 통한 최인접 원자의 이동이 주기적으로 antisite 결합형태를 거침게 되는데, 이 antisite 결합형성의 활성화 에너지가 Zn<sup><i>n</i><sup>+</i>의 존재로 3eV 정도 낮게 됨으로 인해 격자원소의 이동이 10⁴배까지 촉진되는 효과가 나타난다는 것이다. 격자원소의 이동은 (그림 6)과 같이 single vacancy 또는 divacancy를 통해 일어날 수 있는데, 격자가 지배적일 경우 III족 원소 (Al, Ga등) 간의 상호환산 뿐 아니라 V족 원소 (As,P)간의 상호환산도 거의 같은 속도로 촉진될 것이며, 후자가 지배적인 경우 III족 원소의 이동은 촉진되어 V족 원소의 이동은 거의 무시할 만할 것이라고 예측하였다. 그는 Si 불순물에 대해서도 이러한 이동양식을 적용하였다.^[49]

(a) Single vacancy migration mode.

(i) (ii) (iii)

(b) Divacancy migration mode.

(i) (ii) (iii)

● Group III atom. ○ Group V atom. □ Vacancy

(그림 6) 최인접 원자의 뼈질에 의한 원자 이동을 나타내 도식도.^[49]

(a) single vacancy 이동양식. (b) divacancy 이동양식.

한편, 저자는 Zn에 의해 야기된 조성혼합은 Gösele와 Morehead^[54]가 Zn 확산 기구로 제안한 kick-out model로 설명 가능한 것으로 보고 있다. Kick-out model에서는, 식(1)과 달리, 다음과 같이

Zn<sup><i>n</i><sup>+</i> + Ga <→ Ga_n + Zn_n + 2h⁺…(3)
Zn$^+$는 V$_{Ga}$으로 들어가지 않고 Ga를 interstitial로 밀어내고 Ga자리를 차지한다는 것이다. 이 model에 의하면, Zn 확산으로 Ga가 많이 생성될 것이며 이들의 빠른 이동으로 III족 원소의 혼합은 지배적으로 축전될 것으로 기대할 수 있다.

최근 Tan과 Gösele는[51] 조성 혼합이 여러 가지 불순물과 함금계에서 관찰됨을 주시하고, N형, P형에 관계없이 도포된 불순물이 charged point defect (vacancy 또는 interstitial) 농도의 증가를 야기시킨다는 Fermi level effect로 조성 혼합에 대한 일관적인 설명을 시도하였다. Fermi level effect는 Si 반도체에 대한 확산기구로는 잘 정립되어 있는 것인데, 불순물 도포시 + 또는 - 극성을 띠는 vacancy의 농도가 증가되어 저자원자의 이동은 이들 극성 vacancy의 이동에 영향을 받는다는 것이다. III–V 화합물에 이로 적용하여, P형 dopant의 경우 각 극성 vacancy의 농도와 carrier 농도의 상대적 관계를 Fermi level의 함수로 나타내어 정리하면, III족 원소의 계수는 다음과 같은 식으로 정리될 수 있다.

\[D_m = D_{m^+} (p/n) + D_{m^-} (p/n)^2 \]

또한, 이로서

\[D_{m^+} = D_{m^+} (p/n_0) + D_{m^-} (n_0/p)^2 \]

여기서

\[D_{m^+} = D_{m^+} (p/n_0) + D_{m^-} (n_0/p)^2 \]

은 각각 중심, 양성, 음성 vacancy (+, −, −는 이중극성 표시)가 기여하는 확산계수 항이며, p는 hole 농도, n는 intrinsic 전자 농도 이다. 이 식에서

\[D_{m^+} = D_{m^+} (p/n_0) + D_{m^-} (n_0/p)^2 \]

은 보통으로 V族 원소의 확산계수는

\[D_v = D_v (p/n_0) + D_{v^+} (p/n_0)^2 \]

로 주어지며, 역시 p/n_0항이 상대적으로 클 경우

\[D_v > D_v (p/n_0)^2 \]

가 된다. 또한 N형 dopant의 경우도

\[n_0/p_0항이 상대적으로 클 때

\[D_m > D_m (p/n_0)^2 \]

가 된다. 이러한 관계는 결합의 종류에 관계없이, 즉 vacancy와 interstitial의 이동에 모두 적용될 수 있다. 따라서 이상의 관계로 볼 때, N형과 P형 dopant 모두, 도포의 차이가 있지만, III족 원소의 이동속도를 측정시킬 수 있다. 이 Fermi level effect에 의하면 [표 1]에서 보여준 여러 가지 불순물에 의한 조성 혼합양성이 일관적으로 설명 가능하다. Fermi level effect의 타당성을 논의하기 위한 하나의 방법으로 N형과 P형 불순물을 같은 농도로 도포해 측정한 결과 Fermi level effect의 상세로 혼합효과가 나타나지 않음을 확인하는 것인데, [51] AlAs–GaAs 계에 Si와 Be를 동시에 도포해 갔을 때 박막 혼합이 저지되는 <그림3>의 결과가 이를 틀바랐다면, 명백하게 입증시킬 수 있는 자료로는 아직 부족하다.

이온주입에 의한 조성 혼합은 이온주입식 생성된 vacancy (III족 또는 V족 격자), interstitials(Ga, Al, As들) 및 이들의 복합적인 결합의 이동에 의해 축전되는 것으로 알려지고 있다. 이온주입으로 생성된 이들 결합은 열처리시 대부분 회복되는데, 여기서 각 결합들의 회복속도와 소열 과정이 제대로 해석되지 않기 때문에 이온손상을 받은 박막의 혼합에 대한 상세한 과정은 묘사되어 있지 않다.

이상 제안된 몇 가지 IID(열적확산에 의한) model에서 III족과 V족 원소의 이동양상이 다르게 나타나는데 유의할 필요가 있다. 즉, III족 원소의 상호확산 속도와 V족 원소의 상호확산 속도를 비교함으로써 제안된 ICD기구의 타당성을 1차적으로 선별할 수 있다. 중전의 실험결과들은 IIIIV'–III, IIIV–IIIIVV 와 같은 3원–2원 합금계를 사용했기 때문에 III, V 쪽 원소의 확산거동은 동일한 조건에서 비교할 수 없다. 또한 초겨자들은 박막층이 약간 상호확산 속도를 정량적으로 분석하기에 어려움이 있다. 이러한 이유 때문에 본 연구진에서는 4원 합금이 포함된 GaInAsP–GaAs 및 InGaAsP–InP계를택하고
LPE 방법으로 격자정합된 총을 비교적 두껍게 (0.8-3 m) 성장시킨 heterostructure를 사용하여 상호확산 연구를 시도하고 있다.

지금까지의 결과를 간단히 요약하면 (그림7) 및 (그림8)과 같다. (그림7)의 (a), (b), (c)는 각각 Ga0.94 In0.06 As0.95 P0.05 - GaAs heterostructure를 불순물없이 열처리, Zn확산, 그리고 Si확산 시켰을 때 In과 P의 SIMS profiles[22]을 보여주고 있다. 결과에서 Zn확산시 Ga-In상호 확산 속도가 As-P상호확산 속도보다 현저히 더 빠르게 측정되며, Si확산시 이들 두가지 상호확산 속도는 거의 같은 정도로 측정된다. (그림7(b))에 나타난 Ga-In의 지배적인 합합양은 Van Vechten[49]이 제안한 single vacancy 이동양식으로는 설명되지 않는다. 이 결과는 Van Vechten의 divacancy 이동양식으로 설명가능하나, 불순물이 없을 때 divacancy의 농도가 single vacancy에 비해 무시할 만 하므로, Zn가 도핑된 해드 격자 이동에 대한 divacancy의 기여가 single vacancy에 대한 기여를 횡선 농가하게 되려고 기대하기는

<그림 7> Ga0.94 In0.06 As0.95 P0.05 - GaAs heterostructures에서의 In과 P의 SIMS profiles. (a) 불순물없이 열 처리 (700℃, 25h)된 것. (b) Zn확산 (700℃, 25h)된 것. (c) Si 확산 (800℃, 50h)된 것.
리다. 따라서 Van Vechten 이 제안한 vacancy 이동양식으로는 (그림 7(b))의 결과에 대한 설명이 난해하다. 이 결과는 kick-out model이나 Fermi level effect로 설명가능한데 그 타당성에 대한 검정은 Zn와 다른 n형 불순물 (Si 또는 S등) 을 같은 농도로 동시에 도핑하여 두가지 상호확산을 다시 비교해볼로써 쉽게 해결될 것으로 예상된다. Si를 확산시켰을 때 Ga-In과 As-P상호확산이 동시에 진행되는 (그림7(c))의 결과는 Van Vechten의 divacancy 양식을 제외한 다른 model, Si가 III족과 V족 자리에 모두 들어가므로 kick-out model로도 설명 가능하다. 아래는 보다 타당한 model을 찾아내기 위해서는 더 이상의 실험이 필요하다.

(그림 8)의 (a),(b),(c)는 각각 In_{0.72}Ga_{0.28}As_{0.61}P_{0.39} -InP heterostructure 을 as grown 상태로, Zn확산, Te 확산하여 AES분석한 것이다. [28]이 제에서 Zn 확산시 Ga-In 상호확산이 지배적으로 촉진되나, 그 진행은 표면과 InGaAsP /InP계면에서 비정상적인 재분포 양상을 보인다. 이와 대조적으로 Te의 확산에서는 은전한 확산거동도 보이며 Ga-In 및 As-P의 상호 확산이 거의 같은 정도로 진행된다. 이상 일련의 결과로서 불순물 종류와 함금계에 따라 III족 및 V족의 확산거동이 몇가지 유형으로 완연히 다르게 나타나는데 이러한 양상은 앞으로 III-V 화합물 확산 연구분야에서 새로운 논의거리가 될 것으로 예상된다.

InGaAsP-InP heterostructure에서의 Zn 확산 결과로 볼 때, IID 현상을 InGaAsP-InP BH laser 제조에 용용될 수 있을 가능성이 보인다. 그러나 현재까지 InGaAsP-InP laser 제조에 이 기술이 용용된 보고가 없는 이유는 AlGaAs-GaAs와 달리 조성혼합시 격자정합이 파괴되기 때문인 것으로 추정된다. 그리고 혼합된 영역에서 변화된 밴드갭과 꼬집들이 활성층에 대한 전기적
서의 IID현상에 대한 조사와 이의 응용에 대한 기술적인 검토가 있어야 할 것이다.

V. 결 론

불순물에 의한 III-V 화합물의 조성혼합현상은 개략적인 관점에서 보면 normals 조성을 계기로 하는데 난제가 되고 있으며, 한편으로는 MQW, 초절차 조성을 다양하게 변화시키는 기술로 활용될 수 있는 매력이 있다. 이러한 관점에서 현재까지 보고된 조성혼합 현상의 관찰결과와 QWH laser 제조에의 응용실험을 소개하였다.

조성능 소자제조를 위한 계면세어를 효과적으로 실험하기 위해서는 화합물 구성원의 상호간의 거동에 대한 조사와 해석이 선별되어야 한다. 지금까지 제안된 조성혼합기구에 대한 model을 검토하였으나 그 타당성을 논할 정도의 실험적인 자료는 아직 부족한 상태이다. 본 연구에서의 예비실험적으로 조사한 결과에 의하면, 불순물과 합금계에 따라 III족 원소와 V족 원소의 확산거동이 몇 가지 유형으로 다르게 나타나고 있다. 조성혼합 거동을 제대로 해석하기 위해서는 이와같이 III, V족 원소의 확산거동에 대한 정량적인 비교가 필수적이라 본다. 앞으로 화합물 상호간의 연구가 활성화되고 이의 응용연구에 상당한 진전이 있을 것으로 기대한다.

참고 문헌

[Si induced disordering]

[Zn induced disordering]

[Other impurities induced disordering]
23. J. Ralston et al., J. Appl. Phys. 59, 120, 1986. (Se, Be, Mg, Si)

[Applications]

[Theory]

[Self interdiffusion]

[기 타]