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Abstract

A new concept, namely the error discrimination of a code defined as the
capability to not only detect errors from two distinct error sets but also to distinguish
between them has been introduced in (SAKA 89a). Consider E, and E. as the two
distinct error sets, namely the positive error set and the negative error set
respectively. If a code C is not only capable of detecting any error e in {E, E.J},
but also able to identify the error set to which e belongs then the code is said to
be an E. & E. error discriminating code. The error discriminating property enables
construction of unidirectional error detecting/correcting codes using asymmetric error
control code.

We derive here theory for asymmetric ¢ error correcting and d error detecting
codes. Furthermore, unidirectional error control code construction methods are
introduced using asymmetric error control codes and E. & E. error di#criminaﬁng

codes.
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1. Introduction

It is well established that asfmmetric error control codes and unidirectional error control
codes have useful applications in improving the reliability of communication/computing
systems (BOSE 82a,b, 85 86)(UYEM 87)(RAO 89). These codes also provide higher
information rates than symmetric error control codes (CONS 793 (BOSE 82a,b, 85, 86)(LIN
88) (RAO 89) (DARI 89a) etc.

Considerable research has been done to develop important theories for asymmetric error
control codes and unidirectional error control codes. Efficient code construction methods for
these codes have also been proposed (KIM 59) (VARS 73) (RAO 75){CONS 79) (BOSE 82a, b,
85, 86) (DELS 82a, b) (LIN 88) (DARI 89b) etc. However, the theoretical foundation for these
codes has not been well established. That is, the neccssary and sufficient condition of
t-Asymmetric Error Correcting and. simultaneously d-Asymmetric Error Detecting ({-AEC &
d-AED) code is not established as yet. Recently, the necessary and sufficient condition
+-UEC & d-UED code has been given in (SAKA §2b). In this paper, we shall develop theory
for asymmetric error control codes and show some efficient code construction methods for
unidirectional error controi codes by using a special eror discriminaling code (SAKA 89a) and
asymmetric error control codes,

We review the formal definitions of binary symmetric errors, asymmetric errors and
unidirectional errors (BOSE 82a). In the sequel we will refer to the transition 0—1 as 0-emor
and to the transition 1—0 as I-error,

Symmetric Errors . If both (-errors and l-errors appear in a received word with equal
probability then the errors are called symmetric type.

Asymmetric Brrors . If only one type of errors(0-error type or l-error type) occur in the
received words and the error type is known a priori then the errors are called asymmetric
type.

Unidirectional Errors : If both 1-errors and (-errors can occur in the received words, but
in any particular word all errors of one type, then they are called unidirectional errors.

The difference between an asymmetric error set and a unidirectional error set is that
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the direction of error is known a prior for the former. Therefore, we can easily observe
that a unidirectional error control code which can identify errors into 0 - error type and
1-error type, has more error control capacity than that of an asymmetric error control che.
The error discrimination capabilily is defined as the capability to distinguish errors between
two distinct error sets {SAKA 89a). Consider E. and E. as the two distinct error sets, the
positive error set and the negative error set respectively. An E. & E. error discriminaling code
not only detects any error e in {E,, E.}, but also identifies the error set to which e belongs.
Note that the error discriminating property enables construction of unidirectional error control
codes using asymmetric error control codes, |
This paper establishes two important results on the theories for error control codes :
(1) The necessary and sufficient conditions of E. & E. error discriminating codes is the same
as the necessary and sufficient condition of AUED or AAED codes.
(2) The necessary and sufficient condition of ¢-AEC & AAED codes, !-UEC & AUED codes,
and {-EC & AUED codes are the same. -
Furthermore, we introduce some construction methods for -UEC codes and (-UEC & AUED
codes by adding E. & E. error discriminating codes into the asymmetric error control codes.

2. Preliminary

For our purpose, we define some notations which will be used to determine the
capabilities of error discriminating codes, asymmetric error and unidirectional error control
codes.

From now on, we use Z as the set of integer, Z', as a set of binary n-tuples, Z°,
as a set of n-tuples over {0,-1} as Z°,, as a set of n-tuples over {0, £1}, Hamming weight
and Hamming distance, denotéd Wu.(2) and Dw..(X,y) (AWi.(x-y)) for x,y,z € Z3, have
been used to develop the coding theory of symmetric error control codes (PETE 72). How-
ever, for asymmetric and unidirectional error control codes, W.(z) and N(x,y) (AW (x-y))
functions have been used more conveniently to develop the theory (RAO 75) (BOSE 82a).

Recall that N{(x,y) is number of 1—0 crossovers from x to y, ie.,
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N(x, y) AW, (x-y) A(Z; (xi-yi)

It is well known that the Hamming distance D... and the asymmetric distence D, are

obtained as

Diaa (X, y) =N (X, ¥) + N (v, X),
Di(x,y) =max{N(x,y), N(y,x)}.

In addition to these two weights and distances, semiweight W, (z) and semidistance Ds (X, y)

(AWs(x-y)) (RAO 89) are given as
Ds (x, y) AW (x-y) Amin {Wy (x-y), Wi (y-x) }.

Note that the semidistance is not a metric, since it does not satisfy the triangular ine-
quality property. In the next section, we shall show that Ds is a very important function
as it helps in determining the capability of asymmetric codes or unidirectional codes. In this
paper, the functions — N, Dy., Di, and Ds — will be used to determine the capabilities
of error discriminating codes, asymmetric codes, and unidirectional codes.

Throughout this paper, thé addition and subtraction of two binary n-tuples is defined

by the component-wise addition or subtraction in integer ring Z, ie.,
atbA(a,tb, a,tb,, a,tb, -, a.;1b..y)

where
a= (a,, a,, @z ', @w-y), and b= (by, by, by, -+, ba-y).

Note that the Hamming weight is well defined not only over a finite field but also over
the integer ring (PETE 72). It is also clear that N, D, and Ds are well defined over the

integer ring.
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3. Theory

For error control codes, only error correcting and error detecting codes have been
considered so far, However, a new error control concept called an error discriminating code
has been introduced in (SAKA 89a). Here, we consider a special case of error discriminating

code called E. & E. eror discriminaling codes for the error sets as defined in Definition 3-1.

(Definition 3-1) Positive and Negative Error Set :
EAfe(#0)le € 27},
EA{e(#0) e € Z%).

{Definition 3-2) : A code C is called an E. & E- Error Discriminating Code if and only if the
code can discriminate an error e between E, and E..

a
Based on the above definitions, the necessary and sufficient condition for E. & E. error

discriminating codes can be established by Theorem 3-1.

(Theorem 3-1) : A code C is an E. & E. Error Discriminating Code i and only i
Ds(x,y) 2 1 for any distinct x,y € C. ' ' B
Proof - For any x € C, let S,. and S.. denote the sets as follows :

S.A{x+e.{e,€E.},
S..-A{x+e.}|e.€EE.}.

Then the conditions of E. & E. error discriminating codes are that for any pair x and y€C,

(S.NC=¢) and (S,-NC =¢), and 3.2
S.NS,.= ¢. 3.3)

Note that x can be the same as y. Condition (3.2) is for error detection and Condition (3. 3)

is for error discrimination, For the proof it is required to show that for any distinct x,y€C
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Condition (3.1) is equivalent to Condition (3.2) and Condition (3.3).

@

(ii)

Condition (3.1) — Condition (3.2) & (3.3 :

Suppose we have c., ¢, z such that for some x,y€C A
8..NC=¢) or (S,.-NC=¢,), or : 3.2)
S.NS§,.=z. _ SR R )

Note that x can be the same as y, Condition (3.2) means that we get e.(e-)EE.(E)
such that for some x,z€C.

x=2z+e.(or e) (3.4
and (3.1) holds. It is easily observed that (3.4) contradicts Condition (3.1) since for

x,wEC, x and w have at least following two columns from Condition (3.1)

Condition (3.3) means that e.(e.) €E.(E-) such that for some x,y€C
z=xte.=y+te.

Then z covers x and y covers z, and therefore y covers x. This contradicts of

condition (3. 1).

Condition (3.2) & (3.3) — Conditioﬁ 3.1):
Suppose there are some x,y €C with x #y such that x covers y and Condition (3.2)
Condition (3.3) hold. Then we have e.(EE.) such that '

X=Y + e..
That is, S,.NC # ¢. Thus, it is contradiction of condition (3.2) and completes this

proof.

(QE.D.)
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Considerable research has been done for asymmetric error control codes (KIM 59) (VAR
73) (RAO 75,89) (CONS 79) (DELS 82a, b) (DARI 89b) (SAKA 89c]) and unidirectional error
control codes (BOSE 28a,b, 85, 86)(LIN 88) (RAO 89) (DARI 89a). However, theoretical
foundation for these codes is not yet well established. We here develop the basic theory
for t-AEC & d-AED codes and discuss {-UEC & d-UED codes using {-AEC & d-AED codes

and E. error discriminating codes.

The conditions for d-asymmetric {(or unidirectional) error detecting codes as given in

(BOSE 85) are
(Theorem 3-2) (BOSE 85) : A code C is a d-AED code (or d-UED code) if and only if

Ds(x,y) 21 or Dya(x,y) > d+1 for any distinct x,y € C.
O
AAED(AUED) code is a special case of d-AED(dUED) codes with d=n Therefore, the

following corollary follows immediately from Theorem 3-2.
(Corollary 3-1) : A code C is AAED code #f and only #f

Ds(x,y) > 1 for any distinct x,y €C. 3.5

| 0O

Note that the necessary and sufficient conditions for AAED codes, AUED codes, and

E. & E. error discriminating codes are the same. For d-error detecting capability, the
conditions for asymmetric and unidirectional code are also the same. However, for t-error
correcting capability, the conditions for asymmetric codes and unidirectional codes are slightly
different and the information rate for asymmetric error control code constructions are better

than those for unidirectional error control code constructions.

(Theorem 3-3) (CONS 79) (BOSE 82a) (RAO 89) : For any distinct x,y € C,
(1) t-AEC codes : A code C is a t-AEC code if and only if

DA(X,Y) > t+1,
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(2) ¢-UEC codes : A code C is a {-UEC code if and only if
(@ Di(x,y) 2t+1 and Ds(x,y)#0, or
(b) Di(x,y) 22t + 1 and Ds(x,y) =0.
U
It is easily observed that Condition (a) for t-UEC codes is equivalent to the combination
of the condition for ¢-AEC codes and the condition for E, & E. error discriminating codes.
The necessary and sufficient conditions for t-AEC & d-AED((-UEC & d-UED) codes
are the fundamental conditions for asymmetric (unidirectional) error control codes. Both

conditions are defined by the following theorems,
(Theorem 3-4) : A code C is a {-AEC & d-AED code if and only if

() Dua(x,y) > t+d+1 or
(i) Dilx,y) 2 d+1 or for any distinct x,y €C.,
(i) Ds(x,y) 2 t+1 '

Proof : Without.loss of generality we assume l-error type. The sufficiency of-the condition
is fairly obvious, since for any distinct x,y €C, Condition (i) is suffj;:ient for t-EC & d-ED
codes. Similarly, Condition (i) is sufficient for d-AEC codes, and Condition (iii) is sufficient
for t+-EC & AUED codes. That is, any C which has the propefties of (3.6) is also a ¢-AEC
& d-AED code.

To prove the necessity of (3.6), let C be a t-AC & d-AED code and assume (3.6)

does not hold for C. Then, there exists some distinct x,y €C such that,

N(x y)+N(y,x) < t+d and
max {N(x,y),N{y,x)} < d and
min {N(x,y), N(y,x)} < ¢.

We assume without loss of generality, that N(x,y) <t & N(y,x) <d and some distinct x,y €

C are given as
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N(x,y) N, %
x=(11--100--011--100-0)
y=(00--011--111--100-0)
z=(00--000-+-011-100-0)

It is then easily observed that there exist some e, e, EE- such that W(e,) <¢, We) < d,

and
zZ= X t+te =y + e

That is, C can not be an eserror detecting code. By a similar argument C cannot be an
e.. error detecting code for errors in E.. Thus C is not a {-AEC & d-AED code. This is

a contradiction and the proof is complete.

(Q.E.D.)

We can easily infer the following corollary from the definitions of asymmetric codes,
unidirectional codes and error discrimination codes conditions. Note that if a code C is
uhorde’red than for any distinct x,y €C, Ds(x,y) 2 1
(Corollary 3-2) : If a t-AEC & d-AED code C is unordered, then C is also a -UEC & d-UED

code.

(Theorem 3-5) (SAKA 89b)} : A code C is a ¢-UEC & d-UED code if and only if for any distinct
X, yEC,

(i) Dun(x,y)2t+d+1 or
(ii) Da(x,y) 2 d+1 and Ds(x,y) 21 or 3.7
(i) Ds(x,y) 2 ¢+ 1.

It is interesting to observe the difference between the condition for ¢{-UEC & d-UED
codes and the condition for ¢-AEC & d-AED codes. The only difference is that Condition
(i) for ¢-UEC & d-UED codes is more restrictive than Condition (i) for ¢-AEC & d-AED



codes. That is, a condition of (-UEC & d-UED code is a condition for {-AEC & d-AED
code with error discriminating capability.

Note that d-AED(d-UED) codes, (-AEC (¢-UEC) codes, and AAED(UAED) codes are
special cases of {-AEC & d-AED({-UEC & d-UED) codes given in Theorem 3-4(3-5) with
t=0, t=0 & d==n, and t=d respectively. By assigning d=n, we also get the necessary
and sufficient conditions for {-AEC & AAED(t-UEC & AUED) codes from Theorem 3-4(3-5)

as the following corollary shows.
(Corollary 3-3) : A code C is a {-AEC & AAED({-UEC & AUED) code if and only if,

Ds{x,y) 2 t+1. for any distinct x,y€C.
]
Note that the condition for {-AEC & AAED codes, the condition for ¢-UEC & AUED
codes, and the condition for t-EC & AUED codes are the same. From Theorem 3-5, it is
also noted that the necessary and sufficient conditions for SUEC & DUED codes are the

same as the necessary and sufficient conditions for SEC & DED codes.

4. Code Constructions

4,1 E, & E. Error Discriminating Codes

Recall that the necessary and sufficient condition for E. & E. error discriminating codes
is the same as the necessary and sufficient condition for AUED codes. Thus, all AUED
codes are also E. & E. error discriminating code. For example, a constant weight code or
a Berger code is also an E. & E. error discriminating code, |

For the constant code for m=[n/2] or [n/2], the number of codewords is maximized
where n is code length and m is the constant weight of a code. The class of [n /2] -out-of-n
codes has the highest possible information rate among all AUED codes and is therefore called
an optimal class of AUED codes (ANDE 71). It is also known that Berger codes (BEGR 61) are
oplimal systematic AUED codes (BOSE 82a) (RAO 89]. Thus, we have an optimal E. & E. error
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discriminating code as defined by the following corollary.

(Corollary 4-1) :

(1) Let n be code length and m be weight. Then a constant code m= [n/2] or [n/2] is
an optimal nonsystematic E, & E. error discriminating code.

(2) A Berger code is an optimal systematic E, & E. error discriminating code, in the sense
that the information rate k/n is the highest possible for any _information block length
k.

a

The decoding algorithms of constant codes and Berger codes for E. & E. error

discriminating codes are very simple and are shown by means of the following examples.
(Example 4-1) E. & E_ error discriminating codes :

Constant codes : Let n be the code length, m be the constant weight, A be transmitted

codeword, e be error, and A’ (=A+e) be received word of A.

Decoding : 1. Wya(A)= Wyw.(A") — No error,
2. Wim(A) D Wia(A) — l-error(s) (e€E),
3. Wi.(A) {W,.(A") — Q-error(s) (e€E,),

Let A=(0110) and A"= (0110) + (1000). Since Wi..(A) {Wiw.(A"), eEE..

Berger code : Let B be Berger check for information A, AB be transmitted word, A’B’(=A
B+e) be received word of AB, |A’,{ be number of zeros in A’, and D(B) be the
decimal representation of B.

Decoding: 1. DB’)=]A’,] — No error,

2. D(B") <|A;°I — l-error(s) (eE€E),
3. D(B’) >lA’] — O-error(s) (e€E.),

Let AB= (1001001 100) and e = (0010010 001). The A’B’= (1011011 101). Sir;ce D(B’)
=5>|A%=2, e€E,
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4.2 (-UEC Codes

From Theorem 3-5, it is noted that for ¢-UEC & d()t)-UED code constructions, only
{-EC & d-Ed codes, d-UEC codes, or ¢-EC & AUED codes can be ﬁsed. and no other cases
are possible. That is, (i) and (iii) of Theorem 3-5 are the same as () and (i) of Theorem
34, In (i) of Theorem 3-5, the unordered condition of the code is added to (i) of Theorem
3-4. We propose a new technique for code construction based on (ii) of Theorem 3-5.

A theorem for (-UEC code construction from ¢-AEC codes with atv most 3 appending
bits has been shown in (DARI 89a). The {-UEC codes constructed by the theorem in (DARI
89a) may suffer from a lack of efficient encoding/decoding algorithms., We here show a
t-UEC code construction method with simple encoding/decoding algorithm. The code

construction method is based on Corollary 3-2.

{Encoding Algorithm) :
Step 1: Encode an ¢(-AEC code C..
Step 2. Induce a partition
{Pe, Py, -, Pai} on C, ‘ 4.1
such that two codewords x and y are in the same partition if and only if Wu.(x)=
Wi (¥), and Wi (X) > Wyea(2) if and only if x€EP, z€P, and i) j.
Step 3: Let SiA{Wi(x) IxEC.} and S:A{0, 1, -+, m-1} where m is the number of partition.
Define two function v and ¢ as follows :
v (We(u))=1i, : Sy—S: (one-to-one and onto mapping)
¢ (1) =(m=i-1),: S:—Z{ (into mapping)
where g=[log,m] and (j), is a binary representation of j EZ
Step 4 : Construct the code C, as follows :
ClAfe=(u,b)IbA¢-v (Wi(u)), ueC).
' 0
Each partition of (4.1) is a constant coe. That is, each partition is guaranteed to be

a E, error discriminating code. It is also guaranteed that Ds(x-y) 21 for all x&P; and y€P;
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for i) j. Moreover, for the modified Berger checks b: for P: and b, for'P; Ds(b;-b:2>1;
since b; > b: for i) j. _
[CoroMy 4-2} : The proposed code C, constructed by above encoding method. is t+-UEC code
| O
The decoding algorithxﬁ for this construction is also simple and given as follows :
(Decoding algorithm) : | v | |
Step 1: Find the error directions using the mapping &. 'Let c=xb be transmitted codeword
and ¢'=x"b’ be received word where b =v (¢(D(x))). |
(i) No unidirectional errors : Wy x)=v'¢"(b),
(ii) ‘Po;sitive errors : |
1. ¢"(b') is not well defined and ‘WN (b)) m-1 where
b= (b, by, -+, ba-s). |
2. ¢'(b’) is well defined and Wi(b) Yv' (g (b')).
(ii) Negative errors :
1. ¢'(b") is not well defined and b. {0 for some i
2. ¢7'(b") is well defined and Wu(b) (v' (g (b')).
Step 2: Apply the decoding algorithm of the -base asymmetric code with the known error
direction. -
O
The systematic generation of the ¢{-UEC:code depends upon the base ¢-AEC code. If
the -AEC code is a systematic code, then the constructed ¢-UEC code is also systematic,
The efficiency of t-UEC code construction is very dependent on {-AEC code construction
method. Also, the less weight distributions of the base t-AEC codes provide the better
information rate of the proposed t-UEC codes.
Several SAEC and {-AEC code construction methods have been shown (CONS 79) (DELS
81a, b) (SHIO 82a, b]J{CUNN 82)(DARI 89b)(SAKA 89c). These codes provide higher
information rates than symmetric error control codes. But further research on more efficient

systematic t-AEC code construction methods based on this method would be required.



4.3 t-UEC & AUED codes

We review some {-EC & AUED code construction methods and discuss an efficient sys-
tematic (-UEc & AUED code construction procedure based on {-EC & AUED code
construction methods. Recall that the condition for {-AEC & AAED codes, the condition
for t-UEC-& AUED codes, and the condition for ¢-EC & AAED codes, {-UEC & AUED
codes, ‘and {-EC & AUED codes will be the same.

The three basic approaches to systematic {-EC & :AUED code construction are given
in (BOSE 82b), (NIKO 86), and (KUND 89). The format for the codewords is the following

form shown in Fig. 4. 1.

Information bits (T) U

Fig. 4.1 t-EC & AUED code

The systematic {-EC code is used as a base code for the format. The (T) field consists
of check bits for the +-EC code. For AUED purposes, (U) check bits are added to the {-EC
code. _

In (BOSE 82b) the (U) field consists of a -level Berger check, while the (U) field in
(NIKO 86) uses a modified t-level Berger check. In (KUND 89) the (U) field consists of
a nonsystematic (-EC & AUED code. In decoding the codes, all of them use (T) for correct
¢t symmetric errors and use (U) for detecting unidirectional errors which are greater than
t+1. . :

Since the construction method proposed in (KUND 89) provides the best information rate
among the three techniques, we propose a {-UEC & AUED code construction method which
is essentially a modification of the (KUND 89) ¢-EC & AUED code construction. When (=},
the code constructed by this method is asymplotically oplimel. The proposed codeword has
the format of Fig. 4.2.
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Systematic (-UEC & AUED code C

Systematic , _ Nonsystematic
t-AEC code24(Cy) t-UEC & AUED code (Cy)

Check bits for
Information bits (I) t-AEC code (A) Check bits for AUED (U)

Fig. 4.2 The Format of the Proposed Code.

The base code for the proposed code is a {-AEC code instead of a t-ECA code. The
(A) field represents the check bits required to make (IA) a codeword in a systematic 1-AEC
code. A nonsystematic (-UEC & AUED code is used for the (U) field instead of a
nonsystematic (-EC & AUED code. The procedure for code construction is similar to that
given in (KUND 89) and is briefly outlined below.

(Encoding Algorithm)

Step 1: Encode a systematic ¢-AEC code by attaching (A) check bits to (I).

Step 2 : Induce a partition {P,, P,, -, P} on C. such that two codewords x and y are in
the same partiton &f and only if their weight are identical. The number of blocks
in the induced partition (m) is equal to the number of distinct Hamming weights
of codewords in C..

Step 3: Let (U) be a +-UEC & AUED code with >m codewords. Let f be an arbitrary one-
-to-one mapping from partition' P={P,, P,--,P.} to C..- Then the check bits (U)
in a codeword C of the {-UEC & AUEd code being constructed are f(P:;) where
P. is the block that contains (IA) € C..

Qa
The decoding algorithm is though slightly different from (KUND 89}, follows the same
basic principle.

Let Xy be the received word for xy € C: and Xi be the received word for x. € C..
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(Decoding Algorithm])

Step 1: Decode X; using the decoding procedure for C. and find the error direction.

Step 2 : Decode X, using the decoding procedure for C..

Step 3: If an uncorrectable errbr is detected in decoding in Step 1 or Step 2, declare that
an uncorrectable error-pattern was detected in Xix« € C and stop further decoding.
Otherwise, let the decoded word be xi'xy".

Step 4: Compare the weight of x.” with the value implied by x\’.

Step 5: If the comparison indicates that the weight of x.” is the same as that implied by
x.’, declare (I) as the transmitted information word. Otherwise, declare an

uncorrectable error pattern.

O
The proposed code has the following capability. -
(Theorem 4-2) : The proposed code of Fig. 4.3 is a {-UEC & AUED code.
The proof is given in the Appendix. ]

The above t-UEC & AUED code construction methiod uses the {-AEC code as a base
code instead of a {-EC which is used a base code for the ¢-EC & AUED in (KUND 89).
The t-UEC & AUED code is attached to the base code instead of the {-EC & AUED code
which is attached for the ¢-EC & AUED in (KUND 89). Based on the above abservation
we get the following corollary.
tCorollary 4-3] :Let Cw be a t-UEC & AUED code derived by above proposed method and
Cs be the -EC & AUED code derived by the method in (KUND 89). Then there always
exists a C, whose information rate is equal to or better than that of Ce.

| O

Since a constant weight code C, with minimum Hamming distance (dainua.) 20+2 is
a t-EC & AUED code (RAO 89), we obtain the following corollary.

(Corollary 4-4) : A constant weight code C with duivwme=2t+2 is a t-UEc‘ & AUEd code.
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(Example 4-4) SUEC & AUED code for k=5:

Encoding :

Step 1:

Step 2.

Step 3:

Encode the systematic SAEC (8,5) code by the method shown in (CUNN 82]. The
code table is shown in Table 1 in Appendix.

Determine the number of distinct weights for the codewords in C. for our example,
the number of distinct weight is 7(see Table 1 in Appendix).

Pick a nonsystematic SUEC/AUED code C with 7 codewords. From Corollary 4-4,
a constant weight code C with d.i.w.=4 is SUEc & AUED code. One such code
with 7 codewords has length 7 from the constant weight code ‘_ table in (RAO 89).

The mapping table for x, and x. is given in Table 4.1.

Table 4.1 Mapping Table for x. and X

Wian (XA) Xn Wian (XAXN)
0 1110000 3
2 1001100 5
3 1001100 6
4 1000011 7
5 0100101 8
6 0011001 9
7 0010110 10

If 1= (01101) then x,= (01101 010) from Table 1 in the Appendix and we have Wi (x)=A4.
Hence, x«= (1000011). Therefore,

x = xaxx = (01101 010 1000011). 4. 4)
Decoding :
Case 1: Let the transmitted word x be the same as (4.4) and let the error be

e= (10000 001 0100000). Then the received word is
X = (11101 011 1100011).
By decoding Xs, we get x."= (1000011) and the direction of errors is seen to be
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positive. With the known error direction, we decode X:.. In this case an uncor-
rectable error pattern has occurred.
Case 2: Let the transmitted word x be (00000) and let the error be

e= (11000 000 0000000). The the received word is

X = (11000 000 1110000)
From Table 4.1, we know the error direction is positive, With the known error
direction, we decode X, and from Table 1 in the Appendix we get

x.’= (11100 000 1110000).
However, W...(xix«) = 6 is not the same as the weight for x« = 111000 (which
is 3). Thérefore, we decla.re that the received word is an uncorrectable error
paitern. .

O

5. Conclusion

In this paper, we developed the necessary and sufficient conditions for E, & E. error
discriminating codes and {-AEC & d-AED codes. It has been observed that the necessary
and sufficient condition for E, & E_ error discriminating codes is the same as the necessary
and sufficient condition for AUED, and AAED codes. It has also been observed that the
condition for {-AEC & AAED codes, the condition for {-UEC & AUED codes, and the con-
dition for ¢-EC & AUED codes are the same. Thus, -the optimal number of codewords for
t-AEC & AAED codes, t-UEC & AUED codes and {-EC & AAED codes will- be the same.

We have also developed the code construction methods for t-UEC codes and t-UEC &
AUED codes. It has been proved that the information rate of the code:derived by the
proposed {-UEC.& AUED code construction methods is equal to or better than those of ¢-EC
& d-UED code construction method which use specific formats.

However, further research on more efficient systematic ¢-AEC code construction methods
based on the proposed {-UEC & d-UED code construction methods would be beneficial as
th_e efficiency of the proposed construction method are very dependent on the efficiency of

t-AEC code construction methods.
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Appendix

Proof of Theorem 4;2: Since the proposed ¢-UEC & AUED co.de construction method is .
based on the ¢-EC & AUED code construction method in (KUND 89), the following proof
is somewhat similar to the proof outlined in [KUND 89] |

We prove this theorem by showing that the Decoding Algorlthm corrects ¢ or less
unidirectional errors, detects ¢+1 or more errors and discriminates the direction of errors
in the received word. |
(1) E. & E. error discriminating capability : The followiné cases areAfor all possible error

locations. | _

(i) ein Cy: Since_ C: is an AUED code, it is clear that the code can discriminate the

errors between E, ahd E.
(ii) e in C, and e in C. : The direction of error in C, is the same as that in C.. There-

fore, it is clear that the code can discriminate the errors between E, and E..
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2

®3)

(iii) e in Ci: Given xs €C,, the weight of corresponding x, € C, is fixed by the mapping
f (see Encoding Step 3). Therefore, the code can discriminate erros between E. and
E.
t-UEC capability : In (1) above, it is proved that the proposed code is an E. & E. error
discriminating code. Since the direction of erros is known, C. is a I-UEC code. G, is
aléo a t-UEC code. Therefore, the proposed code can correct upto ¢ unidirectional
errors. |
t+1 or more UED capability : if Xy has more than ¢ unidirectional erros, an
uncorrectable error pattern is declared (see Decoding Step 3). If % has less than or
equal to ¢ unidirectional errors, then we can get correct X.. Let us assume that Xi has
t+1 or more unidirectional errors. Then the weight of Xi would be different from the
weight of x. by t+1 or more, Note that C, only can correct upto ¢ unidirectional errors.
Hence, the decoded x.” can only differ in at most ¢ positions from X.. Therefore, the
weight of x.” and % can not be the same. Thus, the ‘corresponding %y will be different
and the received word will be declared as an uncorrectable unidirectional error pattern
by Step 5 of Decoding Algorithm,
(QE.D.)
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Table 1 Table for Systematic SAEC Codes [CUNN 82]

Wi (IA)

O NN H MM LW

N FH WO W MO

N FH UMM AN H O

H LD O H MWL

Check bits (A)

O O o O O
OO rd v v O D vt
OO OO O v

O o D v = OO v
OO e OO
—r - O OO

HO OO O
Ol v ©O O O v
— e O O OO O

O O O O
O rd vl O O O v v
e —_-O OO0 OO

Information bits (I)

O O v O v O v
OO o © O vt owf
SO OO v v o
OO OO OO
OO O OO OOO

QO vl O v O o O vl
OO O O
OO OO v v v v
oo oo

O O vl © v O v
OO v v O QO wd v
DO O O v v v v
OO0 O OCOoOOoO
T v v vt v e

O OO vt O 4
OO O O v v
SO OO v v v v
— o v = v e =
— vt v pe = o vl =t

Decimal

(== B0 e BN B A RS LY 2=

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
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