V-RINGS DETERMINED BY POLYNOMIAL RINGS

Chol On Kim

Let R be a ring with identity. A nonzero left R-module M is called irreducible (or simple) if 0 and M are the only R-submodules.

If R is a division ring, then $R[x]$ is a principal left and right ideal domain. For an irreducible right $R[x]$-module $M, M=R[x]/I$ as a right $R[x]$-module and I is a maximal right ideal of $R[x]$. But since $R[x]$ is a principal ideal domain, there is a monic polynomial $f(x)$ in $R[x]$ such that $I=f(x)R[x]$ Now say $\deg f(x) = n$. Then the irreducible $R[x]$-module $M=R[x]/I$ is generated by $1+I, x+I, \cdots, x^{n-1}+I$ over R as an R-module.

By this well-known standard fact, it is quite natural to raise the following question at least when R is a simple.

Question 1. Suppose R is a simple ring. Then is every irreducible right $R[x]$-module finitely generated R-module?

But the following example by Resco [7, Example 3.3] nullifies our hope for the affirmative answer for the above question.

Example 2 [Resco]. Let k be a field of characteristic zero and let $K=k[[x]]$ be the ring of power series over k. Then K is a domain. Now let $L=k((x))$ be the field of fractions of K. Let $d:K\to k$ be ordinary differentiation and extended d to L in the usual manner. Let $A=K[y,d]$ the differential operator ring over K. That is, A is free left K-module with basis $\{1, y, y^2, \cdots\}$ and with multiplication extended from K via $ya=ay+d(a)$ for every a in K. Also $B=L[y,d]$. Define a $A[x]$-module structure on B; for b in B and $f=\sum x^ia$, in $A[x]$, define
Then B is a right $A[x]$-module. Moreover B is an irreducible faithful $A[x]$-module. But B, as a right A-module, is not finitely generated.

But despite of the above pathological example, we are able to give an affirmative answer to our Question 1 in some situation. Indeed we observe several cases for which every irreducible $R[x]$-module is a finitely generated R-module.

Definition 3. For a ring R, a right R-module M is called **bounded** if the annihilator $\text{Ann}_R(M)$ of M in R is nonzero.

For example of bounded modules let D be a division ring with the center field F. As we have known that, if D is not purely transcendental over F, then the polynomial ring $D[x]$ over D is not primitive. So in this case every irreducible $D[x]$-module is bounded. For, if it were not, then there would exist an irreducible $D[x]$-module M with $\text{Ann}_{D[x]}(M) = 0$. Thus M is a faithful $D[x]$-module and so $D[x]$ is primitive. But this is a contradiction.

The following lemma is a well-known standard fact.

Lemma 4 [Bergman]. Let S be a finite centralizing ring extension of a ring R. If M is an irreducible S-module, then as a R-module, M is a finite direct sum of irreducible R-modules.

The following theorem gives an affirmative answer to Question 1 in some circumstance.

We recall that an overring S of a ring R with same identity is called a **centralizing extension** of R with **finite basis** if S is finitely generated as an R-module with centralizing finite basis \{\(u_1, u_2, \ldots, u_n\)\}, that is,

\[
S = \sum_{i=1}^{n} ru_i \text{ with } ru_i = u_ir \text{ for each } r \text{ in } R, \quad i = 1, 2, \ldots, n
\]

and if \(r_1u_1 + r_2u_2 + \cdots + r_nu_n = 0\), then \(r_1 = r_2 = \cdots = r_n = 0\).

Theorem 5. For a simple ring R any bounded irreducible right
$R[x]$-module is a finite direct sum of irreducible R-module. So it is finitely generated as a right R-module. Moreover, any bounded irreducible right $R[x]$-module never be a projective R-module unless R is right Artinian.

Proof. Let M be a bounded irreducible right $R[x]$-module. Then there is a maximal right ideal I of $R[x]$ such that M is $R[x]$-module isomorphic to $R[x]/I$. Now since M is a bounded $R[x]$-module, $A=\text{Ann}_{R[x]}(M)$ is a nonzero module of $R[x]$ contained in I. Pick

$$g(x)=a_0+a_1x+\cdots+a_nx^n$$

a nonzero polynomial in A with the least degree. Then since we may assume $a_n\neq 0$, R_aR is a nonzero ideal of R. By our assumption since R is simple, $R_aR=R$ so we have

$$1=c_1a_1d_1+c_2a_2d_2+\cdots+c_ka_kd_k$$

for some a_i and d_i in R, $i=1,2,\ldots,k$. Thus

$$f(x)=c_1g(x)d_1+c_2g(x)d_2+\cdots+c_kg(x)d_k$$

is a monic polynomial in A with the least degree. Now for any r in R, $rf(x)\equiv f(x)\equiv f(x)r$ for any r in R. Hence $f(x)$ is a monic central polynomial in $R[x]$. In this case we may use the division algorithm with $f(x)$ and get $A=f(x)R[x]$ since $f(x)$ is monic central. Now if we denote F the center of R, then F is a field and

$$R[x]/A=R\otimes_FF[x]/f[x]F[x]$$

But since F is a field, as a vector space over $F, F[x]/f[x]F[x]$ is generated by $1+f(x)/f[x], x+f(x)/f[x], \ldots, x^{n-1}+f(x)/f[x]$, where n is the degree of the polynomial $f(x)$. Therefore $1+f(x)R[x], x+f(x)R[x], \ldots, x^{n-1}+f(x)R[x]$, i.e., $1+A, x+A, \ldots, x^{n-1}+A$ is a finite centralizing element of $R[x]/A$ over the ring R. Now since M is an irreducible $R[x]$-module and $A=\text{Ann}_{R[X]}M$, considering M as an $R[x]/A$-module it is also an irreducible $R[x]/A$-module. But since $R[x]/A$ is a finite centralizing extension of R, irreducible right $R[x]/A$-module M is a finite direct sum of irreducible right R-module by Lemma 4. Therefore this $R[x]$-module M is finitely generated as an R-module.
Moreover, if M is a projective R-module considering as a right R-module, then its irreducible R-direct summand is also a projective R-module. So the $\text{Socle}(R)$ the sum of the minimal right ideal of R is nonzero because any minimal right ideal of R is R-isomorphic to an irreducible R-direct summand of M. But since R is simple, $\text{Soc}(R)=R$. Thus R is simple Artinian. Therefore a bounded irreducible right $R[x]$-module never be a R-projective module unless R is Artinian.

Corollary 6. Let R be a simple ring. Then if the polynomial ring $R[x]$ is not primitive, any irreducible right $R[x]$-module is a finite direct sum of irreducible R-modules.

Proof Since the polynomial ring $R[x]$ is not primitive, any irreducible right $R[x]$-module should be bounded. Therefore it follows immediately by the proof of Theorem 5.

By the hint of Theorem 5 we are able to come to the consideration of ring R such that every irreducible $R[x]$-module is a projective R-module. The forthcoming result may characterize semi-simple Artinian ring in a new way via $R[x]$-module structure. Roughly speaking, the R-projective module property of irreducible $R[x]$-modules influences very strongly on the ring structure of R so that the ring R becomes semisimple Artinian ring.

Theorem 7. The followings are equivalent.
(i) Every irreducible right $R[x]$-module is a projective right R-module.
(ii) R is semisimple Artinian.

Proof (ii) implies (i). Suppose R is semi-simple Artinian. Then any right R-module is projective. So it is obvious.

(i) implies (ii). Assume that every irreducible $R[x]$-module is a projective right R-module. Define a map θ from $R[x]$ to R by $\theta(f(x))=f(0)$ for $f(x)$ in $R[x]$. Then θ is a ring epimorphism. We claim that every irreducible R-module is a projective R-module. Now for an irreducible right R-module R/B with B a maximal right ideal B of R, let

$$I=\{f(x)\in R[x] \mid \theta(f(x))\in B\}.$$
Then since B is a right ideal of R, I is a right ideal to $R[x]$ and it contains a two-sided ideal $xR[x]$ of $R[x]$.

Pick $f(x) \in R[x] - I$. Then $f(0) \in R - B$ and so $f(0) + B$ is a generator of R/B i.e., $(f(0) + B)R = R/B$. In this case $R[x]/I$ is generated by $f(x) + I$. For, if $g(x) + I$ is in $R[x]/I$, then $g(0) + B = (f(0)r + B$ for some r in R. Hence $g(0) - f(0)r$ is in B and therefore $g(x) - f(x)r$ in I. So $g(x) + I = (f(x) + I)f = f(x)r + I$. This means that $R[x]/I$ is an irreducible $R[x]$-module.

Now as R-modules, $R[x]/I$ is isomorphic to R/B. For if we define $\tilde{g}: R[x]/I \to R/B$ by $\tilde{g}(f(x) + I) = f(0) + B$, then it can be straightforwardly checked that \tilde{g} is an R-isomorphism. So $R[x]/I$ is a cyclic R-module. Now by assumption, since $R[x]/I$ is a projective R-module and so is R/B. Therefore every irreducible R-module is projective. Hence every maximal right ideal is an R-direct summand of R because the exact sequence

$$0 \to B \to R \to R/B \to 0$$

do R-module with B a maximal right ideal of R is splitted.

Finally to finish our proof, let J be a right ideal of R and let K be a maximal complement of J in R, that is, K is a right ideal maximal with respect to the property $J \cap K = O$. Actually, the existence of maximal complement is assured by Zorn's lemma. Then $J + K = J \oplus K$ is an essential right ideal of R. If $J \oplus K \subseteq R$, then there is a maximal right ideal M of R such that $J \oplus K \subseteq M \subseteq R$. In this case M is essential since $J \oplus K$ is essential. But by our result in the previous paragraph M is a direct summand of R. This is impossible and so $J \oplus K = R$. Therefore every right ideal J of R is an R-direct summand of R. Hence R is semi-simple Artinian ring.

As in the proof of the above theorem a ring whose every irreducible R-module is projective is simple Artinian. With this fact the following definition may be of interest.

Definition 8. A ring R is called a right V-ring if every right irreducible R-module is injective.

In the process of the proof for Theorem 7, we get following.

Theorem 9. If every irreducible right $R[x]$-module is an injective R-module, then R is a right V-ring.
By this result we may consider its converse.

Lemma 10 [Armendariz and Fisher]. Let \(R \) be a P.I.-ring. Then \(R \) is a von Neumann ring if and only if \(R \) is a V-ring.

Lemma 11 [Posner]. Let \(R \) be a prime P.I.-ring. Then \(R \) has the classical right quotient ring \(Q(R) \) which is simple Artinian. Also in this case \(Q(R) \) is the classical left quotient ring and \(Q(R) = RF \), where \(F \) is the center of the simple Artinian ring \(Q(R) \). Moreover the field \(F \) is a field of fraction of the domain \(Z(R) \).

Lemma 12. Every prime, von Neumann regular P.I.-ring is simple Artinian.

Proof Let \(R \) be a prime, von Neumann regular P.I.-ring. Since \(R \) is a von Neumann regular ring, then so is \(Z(R) \). Now let \(0 \neq a \in Z(R) \), then there is \(b \) in \(Z(R) \) such that \(a = aba \) But since \(R \) is prime, so is \(Z(R) \) and hence \(Z(R) \) is a commutative domain. From the fact \(a = aba \), we have \(a(1 - ba) = 0 \) in \(Z(R) \). So \(1 = ba \), since \(a \neq 0 \). Thus \(Z(R) \) is a field. So the center \(F \) of \(Q(R) \) is \(Z(R) \) by Lemma 11. Thus \(Q(R) = RF = RZ(R) = R \) and so \(R \) is simple Artinian by Lemma 11.

Lemma 13. Let \(R \) be a P.I.-ring. Then the followings are equivalent.

(i) Every irreducible right \(R[x] \)-module is finitely generated over \(R \) as a module.

(ii) Every primitive factor ring of \(R[x] \) is finitely generated over \(R \) as a module.

Proof (i) implies (ii) Suppose every irreducible \(R[x] \)-module is a finitely generated \(R \)-module. Let \(A \) be a two-sided ideal of \(R[x] \) such that \(R[x]/A \) is a primitive ring. Then the ring \(R[x]/A \) is a primitive P.I.-ring and so it is simple Artinian by Kaplansky. So the ring \(R[x]/A \) has a minimal right ideal \(I_0 \). In this case \(I_0 \) has the form \(I/A \) with \(A \subseteq I \) and \(I \) is a right ideal of \(R[x] \). We claim that \(I/A \) is an irreducible \(R[x] \)-module. By the module structure defined by

\[(f(x) + A)g(x) = f(x)g(x) + A\]

for \(f(x) + A \) in \(I/A \) and \(g(x) \) in \(R[x] \), \(I/A \) is a right \(R[x] \)-module
compatible with the original module structure of I/A as $R[x]/A$-module. By this newly induced module structure on I/A, since I/A is an irreducible $R[x]/A$-module, I/A is an irreducible $R[x]$-module.

Finally, since

$$R[x]/A \cong \bigoplus I_0$$

as $R[x]$-module and I_0 is finitely generated as R-module by assumption, we have that $R[x]/A$ also is finitely generated as an R-module.

(ii) implies (i) Suppose every primitive factor ring of $R[x]$ is finitely generated as an R-module. Now let $M=R[x]/N$ be an irreducible $R[x]$-module with N a maximal right ideal of $R[x]$. If $A=\text{Ann}_{R[x]}(M)$, then $R[x]/N$ is a faithful irreducible $R[x]/A$-module. Hence $R[x]/A$ is a primitive P.I.-ring. do $R[x]/A$ is simple Artinian by Kapiasny and hence $A=0$. Now as $R[x]/A$-module we have

$$R[x]/A \cong \bigoplus R[x]/N$$

since $R[x]/A$ is simple Artinian and $R[x]/N$ is an irreducible $R[x]/A$-module. So $M=R[x]/N$ is a finitely generated R-module because $R[x]/A$ is a finitely generated R-module.

As a byproduct of the above lemma we have the following.

Proposition 14. Let R be a P.I. ring. Then the followings are equivalent.
(i) Every irreducible $R[x]$-module is a finitely generated R-module.
(ii) Every maximal ideal of $R[x]$ can be contracted to a maximal ideal of R.

Proof (i) implies (ii) Let A be a maximal ideal of $R[x]$. Then $R/A \cap R \subseteq R[x]/A$ and $R[x]/A$ is simple P.I. So $R[x]/A$ is simple Artinian. By Lemma 13, $R[x]/A$ is a finitely generated R-module. Therefore $R[x]/A$ is a finitely generated $R/A \cap R$-module, Hence $R[x]/A$ is a finite centralizing extension of $R/A \cap R$. Hence $R/A \cap R$ is Artinian, since $R[x]/A$ is Artinian. Now since $R/A \cap R$ is prime P.I., it is simple Artinian. So $A \cap R$ is maximal in R.

(ii) implies (i) Let A be a primitive ideal of $R[x]$. Then since $R[x]$ is P.I., A is a maximal ideal. So by our assumption, $A \cap R$ is
a maximal ideal of R. Hence $R/A \cap R$ is simple P.I. and so it is simple Artinian. Therefore

$$R[x]/A \cong \frac{(R/A \cap R)[x]}{A/(A \cap R)[x]}$$

is a finitely generated $R/A \cap R$-module because $R/A \cap R$ is simple Artinian. Hence $R[x]/A$ is a finitely generated R-module. Thus by Lemma 13, we get our conclusion.

Now we are in the situation to characterize V-ring whenever it satisfies a polynomial identity.

Theorem 15. Let R be a P.I.-ring. Then the followings are equivalent,

(i) Every irreducible right $R[x]$-module is an injective R-module.

(ii) R is a (right) V-ring.

Proof. By Theorem 9, (i) implies (ii) immediately. Now suppose R is a (right) V-ring. Then by Lemma 10, R is a von Neumann regular ring. For an irreducible right $R[x]$-module M, let $\text{ Ann }_R(M)$ the annihilator of M in $R[x]$. Then the ring $R[x]/A$ has M as a faithful irreducible module. So $R[x]/A$ is a primitive ring. Our claim is that the subring $R+A/\text{ Ann }_R(M)$ of $R[x]/A$ is a prime ring. For this, let \bar{U} and \bar{V} be ideals of $R/\text{ Ann }_R(M)$ such that $\bar{U}\bar{V}=\bar{0}$. Then there are ideals U,V of R such that $\bar{U}=U+\text{ Ann }_R(M)$ and $\bar{V}=V+\text{ Ann }_R(M)$. Then of course $\bar{U}=U+\text{ Ann }_R(M)$ and $\bar{V}=V+\text{ Ann }_R(M)$. Thus

$$R[x]/A=\frac{(U[x]+A)(V[x]+A)}{A} \subseteq A.$$

Thus $(U[x]+A)(V[x]+A)\subseteq A$. But since $R[x]/A$ is prime, we have either $U[x]+A=\bar{0}$ or $V[x]+A=\bar{1}$ in $R[x]/A$. Therefore $U \subseteq A$ or $V \subseteq A$. Hence $U\subseteq A \cap R$ or $V \subseteq A \cap R$. This means $\bar{U}=\bar{0}$ or $\bar{V}=\bar{0}$. So $R+\text{ Ann }_R(M)=R/R \cap A$ is a prime ring.

On the other hand, since R is a von Neumann regular ring, its homomorphic image $R/R \cap A$ is also a von Neumann regular ring. Hence the ring $R/R \cap A$ is a prime, von Neumann regular ring satisfying a polynomial identity. So by Lemma 12, $R/R \cap A$ is simple Artinian. Thus the ideal $R \cap A$ is a maximal ideal.
By this argument so far done in the proof we have that \(R/A \) is maximal whenever \(A \) is a primitive ideal of \(R[x] \). But since \(R[x] \) is a P.I.-ring, every primitive ideal of \(R[x] \) is a maximal ideal. So every maximal ideal of \(R[x] \) can be contracted to a maximal ideal of \(R \). But note that in the proof of Proposition 14 every irreducible \(R[x] \)-module is a \text{finite direct sum} of an irreducible \(R \)-module whenever every maximal ideal of \(R \).

Returning to our situation, \(M \) is a finite direct sum of irreducible \(R \)-module. Now finally by condition (ii) since irreducible \(R \)-module is injective, we have that \(M \) is an injective \(R \)-module. This completes the proof.

Example 16. Without P.I.-ness of \(R \), Theorem 15 is not true. Let \(V \) be an infinite dimensional vector space over a field \(K \). Let \(S \) be the socle of \(\text{End}_K(V) \), and let \(R := S + KI \) Then \(R \) is a von Neumann ring but not P.I. In this case as Villamayor and Michler pointed out, as a right \(R \)-module, \(V \) is irreducible but not injective.

References

Department of Mathematics
Pusan National University
Pusan 609-735, Korea