Abian's Order in Near-Rings and Direct Product of Near-Fields

Lee, Dong Su* and Ryu, Dong Neun**

Abstract

It is shown that a near-ring N which has no nonzero nilpotent elements is a partially ordered set where $x \leq y$ if and only if $yx = x^2$.

Also it is shown that (N, \leq) is infinitely distributive for central elements that is $\tau(\sup x) = \sup(\tau x)$ for every central element τ of N and any subset $\{x\}$ of N. By using some lemmas we showed that a near-ring without nilpotent elements is isomorphic to a direct product of near-fields if and only if N is hyperatomic and orthogonally complete under the condition that every idempotent of N is central.

1. Introduction

In 1970 Alexander Abian introduced an order relation in a semisimple commutative ring. This relation \leq is defined by $x \leq y$ iff $xy = x^2$.

By using that relation he showed that a commutative semisimple ring R is isomorphic to a direct product of fields if and only if R is hyperatomic and orthogonally complete. To prove the above theorem is true he showed that relation is infinitely distributive that is $\tau(\sup x) = \sup(\tau x)$ for every subset $\{x\}$ of $R(1)$.

M. Charccon extended Abian's results to noncommutative rings.

Received October 17, 1989
He showed that if R has no nilpotent elements in stead of semisimplecity in commutative case, the order relation defined by Abian is partially order. And he also showed that R is isomorphic to a direct product of division rings if and only if R is hyperatomic and orthogonally complete whose meanings are same to that of Abian’s (4).

H.C. Myung and L.R. Jimenez showed that Abian’s results are also true in alternating rings with additional conditions that are $xy=0$ iff $yx=0$ and $xy=xt$ iff $yx=tx$ for every $x,y,t \in R$ (5).

In this paper we studied Abian’s order in near-rings and obtained similar results to other cases studied by above some mathematicians.

Recall that $(N, +, \cdot)$ is called a near-ring if the following conditions are satisfied

(a) $(N, +)$ is a group (not necessarily abelian)

(b) (N, \cdot) is a semigroup.

(c) For every $x, y, z \in N$; $(x + y) \cdot z = xz + yz$, that is right distributive law is satisfied.

Since near-ring structure does not satisfy left distributive law $n \cdot 0$ may be not 0 where 0 is the identity for addition. But throughout this paper, we assume that $n \cdot 0 = 0$ for $\forall n \in N$, that is the zero symmetric $N_0 = \{ n \in N \mid n \cdot 0 = 0 \} = N$. Its main examples are the set of functions on an additive group with addition and multiplication defined by following:

(a) addition $+: (f + g)(x) = f(x) + g(x)$ for every x in a group.

(b) multiplication $\cdot: (f \cdot g)(x) = f(g(x))$ that is multiplication is composition of functions.

Multiplication will in most cases be indicated by juxtaposition: so we write $n_1 n_2$ instead of $n_1 \cdot n_2$.

2. Mian Results

Since left distributive law is not satisfied in near-rings we need the following remark.

Remark. If a near-ring N has no non-zero nilpotent elements,
the followings are true.

(i) \(xy = 0 \) if and only if \(yx = 0 \) for every \(x, y \in N \)
(ii) \(xy = 0 \) if and only if \(-xy = 0 \)
(iii) \(xy = 0 \) implies that \(zxy = 0 \) for every \(z \in N \).
(iv) \(xyz = 0 \) implies that \(xzyz = 0 \)

Proof. (i) Since \(xy = 0 \) implies \((xy)^2 = 0 \), \(xy = 0 \)

(ii) From the fact that \((-x)y = x \) for \((-x)y + xy - (-x + x)y = 0 \). But \(x \neq y \) may be not \(xy \) because the left distributive law is not satisfied.

(iii) Since \((zxy)^2 = 0 \) for \(z = 0 \), \(zxy = 0 \).

(iv) is proved by similar method.

Abian's order in near-rings without nonzero nilpotent elements is introduced slightly differently through the following lemma.

Lemma 1. Let an order \(\leq \) be given by \(x \leq y \) if and only if \(xy = x^2 \) for every \(x, y \in N \) in a near-ring \(N \). If \(N \) has no nonzero nilpotent elements, \((N, \leq) \) is a partially ordered set.

Proof. (i) Suppose that \(x \leq y \) and \(y \leq x \). Since \(x = x^2 \) and \(y = y^2 \), we have \((y-x)x = 0 \) and \((x-y)y = 0 \). By remark (i) and (ii) we obtain \(x(y-x) = (y-x)(x-y) = 0 \). Thus \(0 = x(x-y) + (y-x)(x-y) = (x-y)^2 = 0 \). Hence \(x \leq y \). From this we know that \(\leq \) is antisymmetric.

(ii) Suppose that \(x \leq y \) and \(x \leq z \). Since \((y-x)y = 0 \) and \((z-y)y = (z-y)yx = (z-y)x = 0 \) for \(ab = 0 \) implies \(ab = 0 \).

Thus \(xz = xz \). Hence we obtain \(x \leq z \).

By similar calculation we know that \(x \leq y \) implies \(xz \leq yz \) for every \(z \in N \) by remark (iv).

Abian showed that the fact that \(x \leq y \) and \(u \leq v \) implies that \(xu \leq yv \) in his paper (1). But in near-ring case that may be not true. With additional conditions we obtain similar result for near-rings.

Lemma 2. Let \(N \) be a near-ring without nonzero nilpotent elements. If \(x \in C(N) \) where \(C(N) \) is the center of \(N \), then \(xu \leq yv \) if \(x \leq y \) and \(u \leq v \).
Proof. Since \((v-u)u=0\), \((v-u)ux=(v-u)xux=0\). And \((y-x)x=(y-x)xv=(y-x)uxx=0\) by assumption. Thus \(vxu=uxu=xux=uxu=(xu)^2\).

If \(e\) is a central idempotent in \(N\) then we know that \(exe\leq x\) for every \(x\in N\) for \(exe=exe=exe=(ex)^2\). We study the role of idempotents in \(N\) with our order relation.

Lemma 3. Let \(a,s\) be elements in a near-ring \(N\) without nonzero nilpotent elements such that \(sa^2=a\). Then the followings are true.

(i) \(sas=a\)

(ii) \(as=sa\) and \(as\) is an idempotent.

(iii) If \(x\leq as\) for some \(x\in N\), then \(x\) is an idempotent.

Proof. Since \((asa-a)sa=(asa-a)a=0\), \(asa(asa-a)(asa-a)=(asa-a)^2=0\). Thus \(asa=a\).

(ii) since \(asa=a\), \((sa-s)^2=as\). On one hand \((sa-as)sa=(sa-as)as=0\) implies \(sa(sa-as)-as(as-as)=(sa-as)^2=0\).

(iii) Since \(asx=x^2\), \((x-as)x=0\) for \(x^2-asx=asx-asx=asx-asx=0\) by (i). Thus \(x(x-x^2)=0\) for \((x-x^2)x=0\).

We define some terminologies to prove our main theorem.

Definition. A nonzero element \(a\) in a near-ring \(N\) is called a hyperatom in \(N\) if and only if for every \(x\in N\)

(i) \(x\leq a\) implies \(x=0\) or \(x=a\)

(ii) \(xa\neq 0\) implies \((xa)s=a\) for some element \(s\) in \(N\).

We get the following lemma

Lemma 4. Let \(x\) be a nonzero element in a near-ring \(N\) without nonzero nilpotent elements. If \(a\leq x\) for some nonzero hyperatom \(a\) in \(N\), then there exists an idempotent hyperatom \(e\) such that \(xe\neq 0\).

Proof. Since \(a\) is a nonzero hyperatom, \(sa^2=a\) for \(a^2\neq 0\).

By lemma 3 \(sa=as\) and \(as\) is an idempotent. We must show that \(sa\) is a hyperatom and \(sa\neq 0\). At first we assume that \(y\leq as\) for
some $y \in N$. Then $ya \leq as = a$ implies $ya = 0$ or $ya = a$ for a is hyperatom. If $ya = 0$ then $0 = y = y = y(asy) = yy^2 = y^2$. Thus $y = 0$. Secondly if $ya = a$ then $0 = (y-as)a = (y-as)s$. On one hand $(y-as)y = 0$ for $y \leq as$. Thus $y(y-as) - as(y-as) - (y-as)^2 = 0$. This means that $y = as$. Hence the first condition for hyperatom is satisfied. To show that second condition is also satisfied we assume that $yas \neq 0$ for some $y \in N$. Since a is hyperatom there exists an r in N such that $yas = a$ (in fact $as = sa$). Thus as is a hyperatom. Finally $aha = a$. Hence lemma is proved.

Now we study the relation between hyperatom idempotents and near-fields. We get the following lemma.

Lemma 5. Let e be a hyperatom idempotent of a near-ring N without nonzero nilpotent elements. Then the followings are true.

(i) Ne is a near-field.

(ii) If b is another nonzero central hyperatom idempotent of N, then $eb = be = 0$, that is the set of all central hyperatom idempotents of N is orthogonal.

Proof. At first we show that Ne is a subgroup under addition. For arbitrary $ne, n \in Ne$ $nne = n(n-r)e$ by right distributive law. On one hand if $ne \neq 0$, then there exists an r in N such that $ner = e$ for e is a hyperatom where e is clearly a right identity of Ne for multiplication. Thus re is right inverse of ne. Since there exists a right identity and a right inverse of every nonzero element ne of Ne, Ne is a multiplication group except zero. Thus Ne is a near-field.

(ii) If b is another nonzero central hyperatom idempotent of N, we get be and eb are also idempotents of N.

From these facts $be \leq b$. And $be = 0$ or $be = b$. If $be = b$, by similar method we get $eb = e$ and $e = be = eb = b$. This is contradiction to assumption. Hence $be = eb = 0$.

Definition. Let N be a nearring.

(i) N is called hyperatomic if for every nonzero element r in N there exists a hyperatom a in A such that $a \leq r$.
(2) N is called orthogonal complete if $\text{sup} S$ exists for every orthogonally subset S of N.

We easily know that if N is hyperatomic then for every nonzero element q of N there exists a hyperatom idempotent e such that $qe \neq 0$ by lemma 4. Moreover we know that for every element r of N the $\text{sup} r = r$ where e, is central hyperatom idempotents of N. In fact $er \leq r$ for every r in N.

Before we get the main theorem, we prove the following theorem.

Theorem 6. Let $[x_i]$ be a subset of N such that $\text{sup} x_i$ exists. Then for every a in $C(N)$, $\text{sup} (xa) = \text{sup} (x) a$ that is infinitely distributive for center of N.

Proof. Let $\text{sup} (x_i) = v$. Since $x_i \leq v$ for all i, $xa \leq va$.

On one hand, let u be an upper bound of xa. It is sufficient to show that $va \leq u$. Since $ax_i = xa \leq v$, $xa \leq va$ and $x_i \leq v$, we get

$$ (u - va)x_i = (u - v)ax_i = 0 $$

$$(u - va)x_i = x_i^2$$

Thus $x_i \leq (u - v)a + v$ for all i. By the fact we get $v \leq (u - va)a + v$.

Hence $((u - va)a + v) = v^2$. This means $uav = uav = uav$ that is $va - av \leq u$. The theorem is proved.

Now we prove the main theorem.

Theorem 7. A near-ring N is isomorphic to a direct product of near-fields if and only if N is hyperatomic and orthogonally complete under the condition that every hyperatom idempotent of N is in the center of N.

Proof. Let f be an isomorphism from N onto a direct product $\prod F_i$ of near-fields F_i. Let r be a nonzero element and let $f(r) = (r_i)_{\in I}$. Then there exists some $r_i \neq 0$. Let u_i be the unit of F_i. The element a of N given by $a = r_i'((a_i))$ with $a_i = u_i$ and $a_i = 0$ for $i \neq f$ is a hyperatom of R with $a \leq r$.

Suppose that $x \leq a$. If $x \neq 0$ $ax = x^2$. Thus $f(a - x)x = 0$. On one hand
Abian's Order in Near-Rings and Direct Product of Near-Fields.

197

\[f(a-x)x) = f(a-x))f(x) = (f(a)-f(x))f(x) = (r^6 r(x))f(x) = 0. \]

But \(ra_i = 0 \) for \(i \neq j \) and \(r \mu = r \). We get \(x_i = r_i \) and \(x = 0 \) for \(i \neq j \). Thus \(a = x \).

Secondly let \(S \) be an orthogonal subset of \(N \) and \(f(a) = \{ f(s) \mid s \in X \} \). Since \(S \) is orthogonal, \(f(s)f(t) = 0 \) for \(s \neq t \) where \(s,t \in S \).

Let \(f(s) = (x_i) \) \(f(t) = (y_i) \). Then \(x_i \neq 0 \) implies \(y_i = 0 \) for all \(i \).

Let \(v \) be an element of inverse image of \(k \), where \(k = x_i \) for some \(f(s) = (x_i) \). We know that \(v \) is \(\sup S f(v)f(s) = (f(s))_i \).

Conversely, if \(R \) is hyperatomic and orthogonally complete we show that \(R \) is isomorphic to the direct product \(N e \), where \(\{ e_i \} \) is the set of all hyperatom idempotents of \(N \). By lemma 5 we know that \(N e \) is a near-field for all \(i \). Let \(f \) be a mapping \(f \) defined by \(f(a) = (ae_i) \) from \(R \) into \(\prod N e \). Then this mapping \(f \) is a near-ring homomorphism for \(f(a+b) = ((a+b)e_i) = ((ae_i) + (be_i)) = f(a) + f(b) \) and similarly \(f(ab) = f(a)f(b) \). We must show that \(f \) is one to one and onto. At first if \(f(a) = (ae_i) = 0 \), then \(ae_i = 0 \) for all \(i \).

But \(\sup(\sum(\sum ae_i) = a \) implies \(a = 0 \). Secondly for arbitrary \((a,e_i) \) in \(\prod N e \), we let \(a \) be \(\sup(\sum ae_i) \) because the set \(\{ ae_i \} \) is orthogonal. then we get

\[ae_i \sup(\sum ae_i) = \sup(\sum ae_i) = ae_i \]

Hence \(f(a) = (ae_i) = (ae_i) \) so that \(f \) is onto. The theorem is proved.

To prove the theorem 7 the condition that every hyperatom idempotent of \(N \) is central is essential. But if the theorem 6 is true for every element \(a \) in \(N \), then \(\sup(\sum ae_i) = \sup(\sum ae_i) \) even if \(e_i \) is not central. It is question that any other condition instead of centrality satisfies the theorem 6.

References.

2. A. Abian, Order in a Special Class of Rings and a Structure Theorem, Proc. Amer. Math. Soc. 52(1975), 45–49

Department of Mathematics
University of Ulsan
Ulsan 680–749
Namchang High School
Received October 17,1989