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PETTIS DECOMPOSABLE OPERATORS 
AND THE BOURGAIN PROPERTY

Sung Jin Cho

1. Introduction

In 1988, E.M. Bator [긴 introduced a decomposition of bounded 

scalarly measurable functions taking their ranges in dual of a Banach 

space into a Pettis integrable part and. weak* null part. And she 

extended Musiaf s result ([9], Theorem 5.3) to the case X not necessa^ 

rily separable by a suitable weakening of the conclusioiL

Usin용 Bator* s idea, we obtain Odelfs characterization.

In 1982, L.H. Riddle [10] proved 나le following theorem :

Theorem : Let (£l,Z,p) be a separable measure space. If S : 艺X*

be a bounded linear operator with the Bourgain property, then S 

is Pettis representable. And he asked whether the converse is true.

In this paper we define a new bounded linear operator on Li[0,U 

which is called a Pettis decomposable operator and our main theorem 

gives a partial answer to the above question.

2. Preliminaries

Definition 2.1. A finite measure space (£1,2卩)is perfect if for 

each measurable map f: and each set FQR for which f'1 (F)

GS, there is a Borel set GQF with r尸(G)= W(矽

Definition 2.2. A subset B of a Banach space X is called weakly 

precompact if every bowided sequence in B has a weakly Cauchy 

subsequence.
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Definition 2.3. Let f: be a weak* measurable function,

f is said to have the RS-property if the Radon image measure v=p ° 

1 is such that for every n there is a Pettis set K” such that u(Q\K。)

孕alagrand [12] showed that if f is weak* scalarly bounded, then 

f has the RS-property if and only if for every s>0 there exists 

EEZ with ji(n\E)<e such that the set {<女〉炊 ： 11 妇厦가 is 

weakly precompact.

Definition 2.4. Let (D,S,g) be a finite measure space. A family 

V of real-valued functions on Q is said to have the Bourgain property 

if the following condition is satisfied : for each set A positive measure 

and fcar a>0, there is a finite collection F of subsets of A 

of positive measure such that for each function f in w，the inequality 

sup f(B)-inf f(B) <a holds for some member B of F・

The next theorem is due to Bourgain [51

Theorem 2.5. If (Q,S,p) is a finite measure space and 屮 is a 

family of real-valued functions on Cl satisfying the Bourgain property, 

then

(i) the pointwise closure of 甲 satisfies the Bourgain property,

(ii) each element in the pointwise 시osure of 甲 is measurable, 

and

(iii) each element in the pointwise closure of y is the almost 

everywhere pointwise limit of a sequence from y.

It is worth remarking here that a uniformly bounded family y 

of real-valued functions has the Bourgain property if and only if 

the following condition holds:

For each non-null measurable set A in 2 and for each pair a<b 

of real numbers, there is a finite collection F of non-null measurable 

subsets of A such that for each f in v either inf f(B)^a or sup 
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f(B)^b for some member B of F.

We shall say that f has the Bourgain property if the family {<f,x> 

:II x II ^1} has the Bourgain property.

Theorem 2*6. A bounded fiinction f: Q-fX* that has the Bourgain 

property is Pettis integrable.

The following theorem is due to Bator Ell.

Theorem 2.7. Let X be a Banach space and (Q,S,y) a finite 

measure space. Suppose /' Q—X* is bounded and weakly measurable. 

Then f is Pettis integrable if and only if, for every x**GX**f there 

exists a bounded sequence 伉in X such that be曲 of the following 

hold：

(i) xn °/ converes ae to x** °f,

(ii) dji) converges to 广("Wj 如)for every EGS.

3. Pettis decomposition and the weak Radon-Nikodym prope­

rty

Rosenthal gave E. Odell* s characterization of those spaces X not 

containing : The Banach space X fails to contain an isomorphic 

copy if and only if every Dunford-Pettis operator T • X-^Y is 

compact for every space Y.

In this section, combining Lemma 3.4 and Corollary 3.6, we obtain 

Odelf s characterization.

Definition 3.1. Let X be a Banach space and (Q,S,g) be a finite 

measure space and f- a—X* be bounded scalarly measurable, f is 

called Pettis decomposable if there exists a Pettis integra비e function 

g and a weak*-null function h such that f—g+h.

The following Proposition is in [2丄
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Proposition 3.2. Let X be a Banach space and 卩)be a 

finite measure space. K f is a bounded and scalarly measurable then 

the following are equivalent:

(i) There exists a p-Pettis integrable function g and a y-weak* 

null function h such that f—g^-h.

(ii) There exists a |i-Pettis integrable function g such that for 

every 打 EX녀8, 7^**(^**) =x** °g in L血i).

(iii) For every £>0, there exists and a Pettis integrable

function g such that 卩(C\A)V£ and (x °f)jA=zxog for every

MX.

The following Corollary is obvious.

Corollary 3.3. Let X be a separable Banach space and (Q,乙卩) 

be a fixiite measure space. If f: 器 be a bounded scalarly measura­

ble, the following are equivalent:

(i) f is Pettis integrable,

(ii) f is Pettis decomposable.

Lemma 3.4. Let (Q，乙 u) be a perfect measure space and f: QfX* 

be a bounded weak* scalarly measurable function. If where

g is scalarly measurable and h is weak* null, then the operator 

Tf ： XfL&D, defined by Tf(x)=x° f for every xCX, is compact

Proof. Since h is weak* null, T^x)=T^x) in Li(g) for every x&X. 

However, since 용 is scalarly measurable, the operator Tg is compact 

by Proposition 3 of [11

The following theorem is the main theorem of [낀 which is the 

extension of Musial* s result [9].

Theorem 3.5. If X is a Banach space, 나]en the following are 

equivalent:
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(i) X does not contain an isomorphic copy of

(ii) X* has the WRNP.

(iii) If (£l,S,|i) is a complete measure space and f: is bounded

and weak* scalarly measurable, then f is Pettis decomposable.

(iv) If is a complete measure space and f: WX* is bounded 

weak* scalarly measurable, then f—g+ht where g is scalarly measurable 

a교d h is weak* null.

As a corollary of the above theorem, we obtain the following result.

Corollary 3.6. If X is a Banach space, then the following statements 

concerning X are equivalent:

(i) X* has the WRNP.

(ii) Given any complete measure space and any bounded

weak* scalarly measurable function /- f is weak* equivalent 

to a scalariy measurable function.

(iii) Given any bounded weak* scalarly measurable function f- [0,1] 

—X* on the unit interval endowed with the Lebesgue measurable 

sets and the Lebesgue measure, f is weak* equivalent to 쵸 scalarly 

measurable function.

(iv) Given any complete measure space (DXp) and any bounded

weak* scalarly measurable function f: f is weak* equivalent

to a Pettis integrable function.

(v) Given any bounded weak* scalarly measurable functio교 /• [0,1] 

-승X* with the unit interval endowed with the Lebesgue measurable 

sets and the Lebesgue measure, f is weak* equivalent to a Pettis 

integrable function.

(vi) X does not contain any isomorphic copy of 幻.

Proof. Using the same arguments as in the proof of Theorem 

3.5, we see that the implications (iv*히ii)■셔1(iii) and (iv)—^i)T(iv)T(v) 

f(iii) hold. Janika proved the equivalence of (i) and (vi) in [81 

We have only left to show (iii) implies (vi). If X contains 电 then 

there exists a bounded weak* Lebesgue measurable function [0,1]
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such that the operator Tf: X~»Li[0,l] is not compact[41 Let 

/• [0」口rx律 be weak* equivalent to 흥 which is scalarly measurable. 

Then clearly x °f=x°g for every x^X. Thus T{x)—T^x) in Li(g) 

for every xWX and Tt is compact by Proposition 3 of [1]. This 

completes the proof.

Now, we obtain Odell* s characterization.

Theorem 3.7. If X is a Banach space, then the following are 

equivalent:

(i) X does not contain an isomorphic copy of 次.

(ii) Every Dunford-Pettis operator T: X~^Y is compact for every 

space Y.

Proof, (i)-으(ii) : Suppose that X does not contain a copy of 

T - X~>Y is D-P, and (x) is a bounded sequence. Then (&) has 

a weakly Cauchy subsequence, say (%)二〔Consequently (7区))is 

norm convergent, and hence T is compact

(ii)->(i): Suppose that X contains an isomorphic copy of 以如 Then 

by Corollary 3.6 and Lemma 3.4, there exists a bounded weak*-Lebesgue 

measurable function f: such 나lat Tt: A^LiEO,!] is not com­

pact. Let(nn) be a sequence of the dyadic partitions of L0,l] and 

Sn denotes the o-algebra generated by nn. Define an X*-TOlued marti­

ngale (AX) by

f (W*)-jAfdH
Ja A 盆 g(A) %A-

Then (<A, x>,Sn) is a uniformly bounded martingale with

a<e. and hence in LiEO,l]. Hence by Bounded Convergence 

Theorem A is a D-P operator and completes the proof.
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4・ Pettis decomposable operators and the Bourgain prope­

rty

In this section, iisin용 Bator* s idea, we define a bounded linear 

operator S : which is called a Pettis decomposable operator.

The symbol LiEO,ll represents the space where S is

the o-algebra of Lebesgue measurable subsets of [0,1] and 卩 is 

the Lebesgue measure.

Let (nn) be a sequence of the dyadic partitions of E0,l] and 

denotes the o-algebra generated by nn. Let S : ZjO工]rX尸 be a bounded 

linear operator. For each nGN define a function fD: by

fQ~ £ ss)

J a든加 卩 (A)

Then the sequence (侖forms a uniformly bounded X*-valued marti­

ngale. We shall say that the sequence (底£口)is the associated martingale 

with S.

Definition 4.1. Let S - be a bounded linear operator

with the associated martingale The operator S ha옹 the Bourgain 

property if 난le family {<»〉： 刀 CN, !l x II ^1} has the Bourgain 

property.

Definition 4.2. Let S : £i[0,l]^X* be a bounded linear operator 

with the associated martingale (fo). The operator S is called Pettis 

decomposable if there exists a pointwise weak*-cluster point f: C0,ll 

fX* of - n&N, II x II <1} such that f is Pettis decomposable.

Theorem 4.3. An operator S : ZiL0,l]~^y* with the Bourgain prope­

rty is Pettis decomposable.

Proof. Let (fn) be the uniformly bounded X*-valued martingale 

associated with S. Choose a pointwise weak*-cluster point f: 
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of (脩). Let xGBx. Then lim〈氐x〉드〈f,x〉a.e„ By the Bounded Converge­

nce Theorem

S伽=jS〉g for all gELhU〕.

Since {＜女;〉: II x II K가 lies in the pointwise closure of {＜林〉: nCN, 

II x II ＜l}t f has the Bourgain property. So f is Pettis integrable by 

Theorem 2.6. Clearly f is scalarly measurable and bounded. Hence 

f is Pettis decomposable and therefore S is Pettis decomposable.

In [2], Bator proved the following theorem :

Theorem 4.4. Let (Q，乙卩)be a finite measure space and X a 

氏m瀾귯I space. If 私 Q—若 fe a boursted 攻我dy h出爵成關巳 血云iowi 

such that f has the RS-property, then f is Pettis decomposable.

Theorem 4.5. Let S : be a bounded linear operator

with the associated marting기e (Q and f be a pointwise weak*-cluster 

point of (fj. If f be a scalarly measurable function having the RS- 

property, then S is Pettis decomposable.

Proof. If f has the RS-property, then there exi아s a Pettis integrable 

function g : [0工卜셔X* such that x °f~x°g in LiEO,l] for all x€Bx[12]. 

Thus by Proposition 3・2, f is Pettis decomposable. Hence S is Pettis 

decomposable.

Theorem 4.6. Let S : ZalOjJrX* be a Pettis decomposable operator 

and X a separable Banach space. Then S is Pettis representable.

Proof. Let S :丄[0,匸]tX* be a bounded linear operator with the 

associated martingale (fn). Since S is Pettis decomposable, there exists 

a pointwise weak*-cluster point /- such that f is a Pettis

decomposable. Let xEJ3x. Then S(g)x=j(fx)g 如 for all gELiiO,!}- 

Since X is separable, f is Pettis integrable.
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Let x**€X**. Then by Theorem 2.7 and the Bounded Convergence 

Theorem,

〈시S@)〉=lim GcS仞〉=lhn 侦扁〉g 如

=J<Z 1 即侦〉血i=jGW>g 如

Thus f is a Pettis derivative of S and hence S is Pettis representable.

The following Lemina is in [5].

Lemma 4.7 (Bourgsun) Suppose A is a subset of [0,11 with 

positive measure a교d 0<a<7. Then there is an int^er m a흐d 죠 

measurable subset BCA with ji(B)>(l-a)ji64) such that for every unifo­

rmly bounded by 1 real-valued martingale 0,2，)and for every n 

Mm,

(i) ess inf g(A)^ing ga(B)+a

(ii) ess sup g0)室 sup gn(B)-a

where g is any almost everywhere limit of the sequence (&).

The following Lemma is need to our main theorem in this section.

Lemma 4.8. Let S : 丄[0工卜승X* be a bounded linear operator 

with the associated martingale (&) and f- [0,1] 一^* be a 하ointwise 

weak*-시uster point of (fn). ”

If f has the Bourgain property, then S has the Bourgain property.

Proof. Without loss of generality, we may assume that IISII

Suppose that the family {〈f»x〉： II x II ^7} has the Bourgain prope­

rty. Let A be a set of positive measure and a〈b, Choose a〉0 such 

that a+a<d-a. There exists A,... A of with positive measures such 

that for each either 앗ip or inf〈功〉纟a+a for
some i. Since lim = <f,x>a.e., according to l^emma 4.7, there exi­

sts, for each set an integer mt and a non-null subset of B of
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Ax such that

(i) ess inf <£x>^ ing <Ux>+a

(ii) ess 警p <£r〉W 警p <fn,x)-a for each xGBx and for every 

n>=zmt. 1 1

Let fn=max\mi: l^i<k}. Let n^mt let xGBx, and note that there 

exists an At such that either

앗ip〈成〉糸ss 앗ip〈£*迪압ip <0gt

a+tx ing^^^ess inf inf<frfx>-a

That is, either bM 암ip〈k〉이" a^inf Therefore the sets Bi,... f 

Bk will work for the set A for the family {〈々〉：n^mt II r II 夕 

}. However the fu..are just simple, 요o that for each i=Z,...”・ 

1 there exists a set G on which / is constant and p0cG)>O, Thus 

the sets 岛…B&GcA,…,C"订M will work for the set A for the 

family {强久〉：处 EZV, llxll ^1}. Thus S has the Bourgain property.

Theorem 4.9. Let S : be a Pettis decomposable operator

with the associated martingale (&) and with a Pettis decomposable 

function 卩 If f=g+hf where g has the Bourgain property

and h is weak*-null, then S has tiie Bourgain property.

Proof. Let f- [Q 匸卜■셔X* be a pointwise weak、duster point of (&) 

and 户g+九 where g has the Bourgain property and h is weak*- 

unlL Let xGBx. Then (f,x> is a pointwise duster point of the sequence 

(〈fn,x〉)・ We must show that (<fn,x> ' n EN, IL이I g가 has the Bour­

gain property. Suppose that {〈£”x〉： 鈴GN, II 妇I W가 fails the Bour­

gain property. Then by Theorem 4.8 f does not have the Bourgain 

property. However since f-g is weak*-null, g does not have the Bourgain 
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property. This is a contradiction and completes the proof.
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