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PETTIS DECOMPOSABLE OPERATORS
AND THE BOURGAIN PROPERTY

Sung Jin Cho

1. Introduction

In 1988, EM. Bator [2] introduced a decomposition of bounded
scalarly measurable functions taking their ranges in dual of a Banach
space into a Pettis integrable part and. weak* null part. And she
extended Musial’ s result ([9], Theorem 5.3) to the case X not necessa-
rily separable by a suitable weakening of the conclusion

Using Bator’s idea, we obtain Odeil's characterization.

In 1982, L.H. Riddle [10] proved the following theorem :

Theorem : Let ((},X,11) be 2 separable measure space. If S © L()—>X*
be a bounded lnear operator with the Bourgain property, then §
is Pettis representable. And he asked whether the converse is true.

In this paper we define a new bounded linear operator on I.[0,1]
which is called a Pettis decomposable operator and our main theorem
gives a partial answer to the above question.

2. Preliminaries

Definition 2.1. A finite measure space (2,X,u) is perfect if for
each measurable map f: Q>R and each set FCR for which /' (F)
€Y, there is a Rorel set GCF with w™(G)=uf'(F).

Definition 2.2. A subset B of a Banach space X is called weakly
precompact if every bounded sequence in B has a weakly Cauchy
subsequence.
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Definition 2.3. Let f: 2>X* be a weak* measurable function.
f is said to have the RS-property if the Radon image measure v=p° f°
! ii such that for every n there is a Pettis set K. such that (2 \K.)

%Ealagrand [12] showed that if f is weak* scalarly bounded, then
f has the RS-property if and only if for every >0 there exists
EE€X with p(Q\E)<e such that the set {{frxs: lxll L1} is
weakly precompact.

Definition 2.4. Let (Q,X,u) be a finite measure space. A family
y of real-valued functions on ) is said to have the Bourgain property
if the following condition is satisfied - for each set A positive measure
and for each a>0, there is a finite coHection F of subsets of A
of positive measure such that for each function f in y, the inequality
sup f(B)-inf f(B) <a holds for some member B of F.

The next theorem is due to Bourgain [5.

Theorem 2.5. If (3,Z,p) is a finite measure space and vy is a
family of real-valued functions on Q satisfying the Bourgain property,
then

(1) the pointwise closure of y satisfies the Bourgain property,

(if) each element in the pointwise closure of y is measurable,
ang

(ili) each element in the pointwise closure of y is the almost
everywhere pointwise limit of a sequence from wy.

It is worth remarking here that a uniformly bounded family
of real-valued functions has the Bourgain property if and only if
the following condition holds -

For each non-null measurable set A in X and for each pair a<b
of real numbers, there is a finite collection F of non-null measurable
subsets of A such that for each f in v, either inf f(B)2a or sup
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fB)<b for some member B of F.
We shall say that f has the Bourgain property if the family {{{x
> Ix# £1} has the Bourgain property.

Theorem 2.6. A bounded function f . —>X* that has the Bourgain
property is Pettis iniegrable.

The following theorem is due to Bator [1l.

Theorem 2.7. Let X be a Banach space and (Q,Z,u) a finite
measure space. Suppose f . Q—>X* is bounded and weakly measurable.
Then f is Pettis integrable if and only if, for every x*&€X**, there
exists a bounded sequence (:l:‘.):= ; in X such that both of the following
hold :

(i) Z.°f converes ae. to x**of,

Gi) %o((w*)-fsf dy) converges to r**(w*)-[f du) for every EEE.

3. Pettis decomposition and the weak Radon-Nikodym prope-
rty

Rosenthal gave E. Odell’s characterization of those spaces X not
containing £, The Banach space X fails to contain an isomorphic
copy £, if and only if every Dunford-Pettis operator T @ X—Y is
compact for every space Y.

In this section, combining Lemma 34 and Corollary 3.6, we obtain
Odell’s characterization.

Definition 3.1. Let X be a Banach space and (Q,Z,u) be a finite
measure space and f. Q>X* be bounded scalarly measurable. f is
called Pettis decomposable if there exists a Pettis integrable function
g and a weak®null function 2 such that f=g+h.

The following Proposition is in [2].
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Proposition 3.2. Let X be a Banach space and (2,Zu) be a
finite measure space. If f is a bounded and scalarly measurable then
the following are equivalent .

(i) There exists a p-Pettis integrable function g and a u-weak*
null function 2 such that f=g+h.

(ii) There exists a p-Pettis integrable function g such that for
every #**EX*, T**E*)=x**cg in L)

(iii) For every ¢>0, there exists A€X and a Pettis integrable
function g such that u(Q@\A)<e and (x° ffu=x°g ae-[p] for every
x€X.

The following Corollary is obvious.

Corollary 3.3. Let X be a separable Banach space and (£2,Zu)
be a finite measure space. If f . Q—>X* be a bounded scalarly measura-
ble, the following are equivalent :

() f is Pettis integrable,

(i) f is Pettis decomposable.

Lemma 3.4. Let (Q.%,1) be a perfect measure space and f: Q—>X*
be a bounded weak* scalarly measurable function. If f=g+h, where
g is scalarly measurable and h is weak* null, then the operator
Ty - X2L(y), defined by Ti(x)=x°f for every x€X, is compact.

Proof. Since h is weak* null, Ty{x)=T(x) in Li(u) for every xEX.
However, since g is scalarly measurable, the operator T, is compact
by Proposition 3 of [1].

The following theorem is the main theorem of [2] which is the
extension of Musial’s result [9].

Theorem 3.5. i X is a Banach space, then the following are
equivalent :
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(i) X does not contain an isomorphic copy of £.

(i) X* has the WRNP.

(i) If (2,Z,4) is a complete measure space and f: 2->X* is bounded
and weak® scalarly measurable, then f is Pettis decomposable.

(v} f (Q,Z,1) is a complete measure space and f: Q—>X* is bounded
weak* scalarly measurable, then f=g+h, where g is scalarly measurable
and h is weak* null

As a corollary of the above theorem, we obtain the following result.

Corollary 3.6. If X is a2 Banach space, then the following statements
concerning X are equivalent -

(i) X* has the WRNP.

(ii) Given any complete measure space (Q,Z,p) and any bounded
weak* scalarly measurable function f: Q—=>X* f is weak* equivalent
to a scalarly measurable function.

(i) Given any bounded weak* scalarly measurable function f: [0,1]
—X* on the unit interval endowed with the Lebesgue measurable
sets and the Lebesgue measure, f is weak® equivalent to a scalarly
measurable function.

(iv) Given any complete measure space (2,Z,) and any bounded
weak* scalarly measurable function f: QX% f is weak™ equivalent
to a Pettis integrable function.

(v) Given any bounded weak® scalarly measurable function f: {0,1]
->X* with the unit interval endowed with the Lebesgue measurable
sets and the Lebesgue measure, f is weak* equivalent to a Pettis
integrable function.

(vd) X does not contain any isomorphic copy of £.

Proof. Using the same arguments as in the proof of Theorem
3.5, we see that the implications (iv)—>(@)—>(iii} and GV)2>O>{v)> (V)
—(iii) hold. Janika proved the equivalence of (1) and (vi) in [81
We have only left to show (ili) implies (vi). If X contains £, then
there exists a bounded weak® Lebesgue measurable function £: [0,1]
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—X* such that the operator 7:: X—L,[0,1] is not compact{4]. Let
f:[01]>X* be weak* equivalent to g which is scalarly measurable.
Then clearly xef=x°g for every *€X. Thus T{x)=TLx) in LW
for every x€X and T: is compact by Proposition 3 of [1]. This
completes the proof.

Now, we obtain Odell’s characterization.

Theorem 3.7. If X is a Banach space, then the following are
equivalent .

(i) X does not contain an isomorphic copy of £.

(i) Every Dunford-Pettis operator T :X—>Y is compact for every
space Y.

Proof. (i)—(ii) : Suppose that X does not contain a copy of &,
T XY is D-P, and (x,) is a bounded sequence. Then (x.) has
a weakly Cauchy subsequence, say (x,, ):__1 Consequently (T(xm)) is
norm convergent, and hence T is compact.

(i—()  Suppose that X contains an isomorphic copy of £. Then
by Corollary 3.6 and Lemma 3.4, there exists a bounded weak*-Lebesgue
measurable function f: {£0,1]>X* such that 7\ : X—L.[0,1] is not com-
pact. Let(n.) be a sequence of the dyadic partitions of [0,1] and
%. denotes the o-algebra generated by .. Define an X*-valued marti-
ngale (£, X.) by

f=3 (w*)—[sfdp

T A& p(A) LN

Then ({f #).X.) is a uniformly bounded martingale with lLim{f,>
={fx> ae. and hence in L.{01]. Hence by Bounded Convergence
Theorem 77 is a D-P operator and completes the proof.
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4. Pettis decomposable operators and the Bourgain prope-
rty

In this section, using Bator's idea, we define a bounded linear
operator S : L,{0,11>X* which is called a Pettis decomposable operator.
The symbol L,[0,1] represents the space L.{([0,1]=u) where T is
the o-algebra of Lebesgue measurable subsets of [0,1] and p is
the Lebesgue measure.

Let () be a sequence of the dyadic partitions of [0,1] and Z.
denotes the c-algebra generated by .. Let S © L,[0,13>X* be a bounded
linear operator. For each n€N define a function f :[0,1]=>X* by

— S(xa)
"= B WA
Then the sequence {f,,X.) forms a uniformly bounded X*-valued marti-

ngale. We shall say that the sequence (f,,X.) is the associated martingale
with S.

Definition 4.1. Let S:L[01]>X* be a2 bounded lLnear operator
with the associated martingale (f,,Z.). The operator S has the Bourgain
property if the family {(fx> 1n€EN, {xll <1} has the Bourgain
property.

Definition 4.2, Let S :L.[0,1]1>X* be a bounded linear operator
with the associated martingale (f.). The operator S is called Pettis
decomposable if there exists a pointwise weak*cluster point f: [0,1]
—=X* of {{fox> 1nEN, llxll <1} such that f is Pettis decomposable.

Theorem 4.3. An operator S : L,[0,1]->X* with the Bourgain prope-
rty is Pettis decomposable.

Proof. Let (f.) be the uniformly bounded X*-valued martingale
associated with S. Choose a pointwise weak*-cluster point f: [0,11>X*
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of (f). Let x€Bx. Then lim <f,x>={fx> ae.. By the Bounded Converge-
nce Theorem

S@ex={{fx>g dn for all g<Lfo,1].

Since {{fa> : 21l <1} les in the pointwise closure of {{f,x) : nEN,
| =l <1}, f has the Bourgain property. So f is Pettis integrable by
Theorem 2.6. Clearly { is scalarly measurable and bounded. Hence
f is Pettis decomposable and therefore S is Pettis decomposable.

In [2], Bator proved the following theorem :

Theorem 4.4, Let (2,Z,u) be a finite measure space and X a
Banach space. f /1 G—X" is a bounded scatarly messarable fomction
such that f has the RS-property, then f is Peitis decomposable.

Theorem 4.5. Let S:L[0,1]>X* be a bounded linear operator
with the associated martingale (f)) and f be a pointwise weak®-cluster
point of (f.). If f be a scalarly measurable function having the RS-
property, then S is Pettis decomposable.

Proof. If f has the RS-property, then there exists a Pettis integrable
function g : [0,1]>X* such that x ° f=x g in L.{0,1] for all xE€Bs[12].
Thus by Proposition 32, { is Pettis decomposable. Hence S is Pettis
decomposable.

Theorem 4.6. Let S : L,[0,1]->X* be a Pettis decomposable operator
and X a separable Banach space. Then S is Pettis representable.

Proof. Let S L,[0,1]>X* be a bounded linear operator with the
associated martingale (f.). Since S is Pettis decomposable, there exists
a pointwise weak*-cluster point f: [0,11>X* such that f is a Pettis
decomposable. Let tEBx. Then S@hx=[{fx)g du for all g€L.[01].
Since X is separable, f is Pettis integrable.



PETTIS DECOMPOSABLE OPERATORS
AND THE BOURGAIN PROPERTY 229

Let x*&X**, Then by Theorem 2.7 and the Bounded Convergence
Theorem,

G**.S(g) =lim & S(@) =lim g d
=[f limedu=[*"Pg dy
Thus f is a Pettis derivative of S and hence S is Pettis representable.
The following Lemma is in [51.

Lemma 4.7 (Bourgain) Suppose A is a subset of [01] with
positive measure and 0<a<I. Then there is an integer m and a
measurable subset BCA with p(B)>(1-a)u(4) such that for every unifo-
rmly bounded by 1 real-valued martingale (g.,2.) and for every »
2m,

() ess inf g(A)Sing g«{B)t+a

(i) ess sup g(A)Zsup g.(B)-a
where g is any almost everywhere limit of the sequence {g.).

The following Lemma is need fo our main theorem in this section.

Lemma 4.8. Let S:L,[01J>X* be a bounded linear operator
with the associated martingale (f) and f: [0,1J>X* be a pointwise
weak*<cluster point of (f.). i

If f has the Bourgain property, then S has the Bourgain property.

Proof. Without loss of generality, we may assume that IS <1
Suppose that the family {Kfx> ! |l x{l £1} has the Bourgain prope-
rty. Let A be a set of positive measure and alb, Choose )0 such
that a+o<b-a. There exists A,,..., A of with positive measures such
that for each xE€By either sup {fx)<b-o or inf darZata for
some i Since 1im<f..,x>:<f,x>d.e., according to Lemma 4.7, there exi-

sts, for each set A, an integer m, and a non-null subset of B. of
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A, such that
@) ess inf (L ing {2 +a

(i) ess Sup (oL P {f.x)« for each xEBx and for every
nZ .
Let m=max{im: - 1Li<k}. Let n2m, let xEBy, and note that there
exists an A, such that either

b-a2sup faLess sup (o< sup < a-a
or
ato s inl"(ﬁx\/éess 121.' NEZIES mf ST

That is, either bésup(f..x> or aSmf {f.x>. Therefore the sets By, ...,
B, will work for the set A for the family {{f,2? i n=m, lxll <1
}. However the f,,...f.. are just simple, so that for each i=1I,...m-
1 there exists a set C on which f is constant and wANC)>0, Thus
the sets By, ...BuCiNA,...,.Cand will work for the set A for the
family {(fox? 1 #€N, lixll£I}. Thus S has the Bourgain property.

Theorem 4.9. Let S . L,{0,11->X* be a Pettis decomposable operator
with the associated martingale (f,) and with a Pettis decomposable
functicn f: 10211>X* If f=g+h, where g has the Bourgain property
and s is weak*null, then S has the Bourgain property.

Proof. Let f: [01]>X* be a pointwise weak*-cluster point of (f.)
and f=g+h, where g has the Bourgain property and % is weak®-
unll. Let *€B,. Then {fx) is a pointwise cluster point of the sequence
(f,x>). We must show that {{f.x) :nEN, |2/l £1} has the Bour-
gain property. Suppose that {{f,x> :#E€N, llxll 1} fails the Bour-
gain property. Then by Theorem 4.8 f does not have the Bourgain
property. However since f-g is weak*-null, g does not have the Bourgain
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property. This is a contradiction and completes the proof

10.
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