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A Pair of Commuting Operaters
on Hilbert Spaces

Hae Gyung Lee

1. Introduction

Since the concept of joint spectrum for a family of operators was
initially introduced by R. Arens and AP. Calderon [1], several authors
have established its definitions and properties. The typical and successful
definitions among them have carried out by J.L. Taylor [8] and
AT. Dash [6].

In this paper we give a characterization of the joint spectrum,
in the sense of JL. Taylor of a pair of commuting operators on
Hilbert spaces and some applications are given.

Let H be a complex Hilbert space and B(H) the algebra of all
linear continuous operators on H. Let ¢=(g,,a,)CB(H} be a pair of
commuting operators. Consider the sequence

& S
(LD 0—H —“>HOH —>H— 0,

_ where & ()=aw®ax (x€H) and &, (oDr)=aw—ax(ns<H).
Clearly, awt,=ax; implies Si i 82:0. Then, J.L. Taylor has defined
@ to be nonsingular if the sequence (1.1} is exacts ie. im 82=

ker 6;. And he has defined the joint spectrum of(g,H) of a on

H, to be the complement of the set of all z—a=(zai—a, 22— @) 18
nonsingular on H.
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2. Invertibility of a commuting pair

We begin the following. Suppose that a=(2,4:)CB(H) is nonsingular
on H. Consider the dual sequence of (1.1), namely
5 5
2.1 0—>H —4—> HOH—4>H—>0,
where 8, ()= ~au@ax E€H) and 8 x®rw)=antar (nxCH).
We recall that the pair a*=(s,q,) is nonsingular on H if the seque-
nce (21) is exact.

Lemma 2.1. If a=(a,a,) is nonsingular on H, then both aia
+@me: and guntma. are imvertible on H.

Proof. Let us show that a:a;+a. is injective and surjective on
H I (a;al+a;ag)x=0 for a certain x€H, then g, x@a.xCker 52‘ =
(im ). But 2,xBax€im & ihence 4 x®axC€(im 8)Nim & =
{0). Thus aix=a.x=0. Since ker 8=0, we have x=0. Take an arbit-
rary yEH and let us find an x€H such that y=awax+amz. We
infer that 8): (ker8*~>H is an isomorphism, and therefore y=8
O:®y) with yy.cker 5 YF=im 8:: hence y.\@®y:=a 2Pa.x. Ana-
logously, the operator aia,+axm: is invertible and this completes the
proof of the lemma.

Theorem 2.2. Let a=(a,a.) C B(H) be a commuting pair. Then
¢ is nonsingular on H if and only if the operator

2.2) afa)= (al a;)
— 2 a

is invertible on H®H.

Proof. According to Lemma 2.1, it is clear that the operator
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2.3 < afaa,+aa) —a;(ala;+a,a;)‘>
az(a:ax + d;dz)_‘ a;(a;a: + ala;)'l

is a right inverse for the operator wf@) given by (2.2) 5 hence afa)
is surjective on HPH. Let us also notice that af@) is injective too.
Indeed, if a(@)(xDx)=0, then xnPxEker 5 nim 8 =10}, and hen-
ce m=x=(. Conversely, suppose that af@) is invertible on HEH.
The afa)* is invertible : therefore

UB)a)*= ; axa+ e 0

(0 M;"‘ds?a;)

is invertible, and hence (a2, tag,) and (a‘a‘,"‘aza;) are operators
from B(H). Let us prove that the sequence (1.1} is exact. Indeed,
if 8.(x)=aw®ax=0, then {(aa,+aa)x=0, whence z=0. Assume now

that 8:(xx®xz)=anxz—aaxl=0. If y=a:x,+a;tz, then a(@)(x:Px)=yP0 ;
hence u:®x.=afe)'(yPH0), and thus on account of (2.3) we obtain

X, =al(a.la 1 +a.2az)'ly»

n=a e, taa),
ie. the exactness of (1.1) at the second step. Finally, if yEH is
arbitrary, then x=afea:taa.)’y (=12) satisfy the equation ax:+ax

=y, and the proof is complete.

Notice that a=(a,a;) CB(H) is nonsingular if and only if the mat-

nx
11( a*) = sax a
)
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is invertible on HCH, and also if and only if the matrix

»

a(@)*= (al —a;
17} a, )
is invertible on H®H.

Corollary 2.3. If A is any commutative algebra of operators on
H, then the map

A*3a —>ofa)E BHDH)
is R-linear.
Proof. Since the maps & and &) are linear on A% ofa) is R-linear.
Remark. The set of matrices {oz): zEC?} can be identified with
the algebra of quatermions and that the map z afz) is an R-linear

isometric isomorphisml10J.

Corollary 2.4, For any z=(z,2)€C° z+0, ofz)® exists and ofz)’
=(lz I+ | 219 afp).

Proof. It is easy to see that o(zH)={z}, hence afz) is invertible
for any 2#0. Then

a@'=(|z *+ | z: H'a(z).
Corollary 2.5. For any 2€(% z#0, we have
le@z il =izl and ozl =lzH*
where lzlP= 1z P+ 128

Corollary 2.6. If a=(a, a;) is nonsingular on H, then we have
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the following commuting relations :
aaa,+ag) a,+alae +ans)ya,=1

R4 gleetaa) atafaa tapye,=1
aam, taa) atafes, tags)'a,=0.

Formulas (24) can be obtained by using the fact that (2.3) provides
also a left inverse for ofa).

3. Joint spectrum

Lemma 3.1. For a commuting pair of operators a=(awa))CB(H),
we have o(@H)=C'—{zEC*; (z—a)*EBHDH).

Corollary 3.2. If a=(a,a;) C B(H) is a commuting pair, then a(gH)=
C’—{zE€C ; (afz)—afa)? EB_(H@H)}-

Definition 3.3. The mapping
C'—afaH) 2z —R(za)=(afz)— @)}’ EBHDH)
is called the resolvent of a
Lemma 3.4. For a commuting pair a=(a,a:) (B(H), the joint spect-
rum o(agH) is a closed set and the resolvent R(za) is an R-analytic

function in C*—o(aH).

Proof. Fix a point z§ofaH). Since the map z>ofz) is isometric,
then for z€C* such that liz—2ll <l afz—a)—11" the series

af(zo— a)'léo(—l)" (a(z—z)ze—a)")
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is absolutely convergent and defines (z—a)'. In particular, the set
C*~ofa,H) is open. Notice that afz—z) is a polynomial of degree
one in z and z;, where we get easily that a(z—e)' is R-analytic
in C~o{aH).

Lemma 3.5. For a commuting pair ¢=(a,a:)CB#H) and any 2
in C* such that [zl >lla@il, we have z is not in of@H) and

G () —0)'= I (o) o) alz)’

is absolutely and uniformly convergent on the sets {z€C*; izl >7}
with > ffa@li.

Prooi. According to Coroflary 25, we have that if iz > la@,
then Il af@)'afa) ll <1, hence the series (3.1) is absolutely convergent.
It is straightforward to verify that (3.1) defines the inverse of a(a)-
ofa). If r>lof@ll, then for any z in € such that [zl >7 we
obtain by a direct estimation

I @@ —a@)* | <r'r —H ag@) I Y,
hence the convergence of (3.1) is uniform.
Notice that lim I (afz) —afa)* | =0.

Theorem 3.6. Let ¢=(a,a:)CB(H) be a pair of commuting operators.
Then the joint spectrum o(@H) of 2 is a compact nonempty set

in C.

Proof. On account of the Lemma 34 and Lemma 35, o(gH) is
a compact subset of C. Let us assume that ofgH) is empty. Then
by Theorem 22 the operator

((zi—a) a—a)+H{—a)* (z.— t'.lz))_1
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does exist, therefore the right ideal generated in B@) by z2—a is
equal to B(H) for any z=(2,z)EC* which is, according to [3], a
contradiction.

4. Applications

Let H be a fixed Hilbert space. Let a=(z.,a;) be a commuting
pair of linear operators on H and let K be a closed subspace of
H K reducing a, ie aKCK, a;KCK for j=12 We denote by «lK
the restrictions (a./K, a!K).

Proposition 4.1. Assume that a=(a,2;) CB(H) is nonsingular on
H and K be a closed subspace of H K reducing a. Then alK
is nonsingular if and only if af@)’(KDK)CKEXK.

Proof. We apply Theorem 22 If «lK is nonsingular, then
ofa| KY'€BEKDK). Take nEKPK. We have

a(@)(efa) ™ —aofz| K)'p)=0,

hence of@)'n =a@|K)'n C KBK. Conversely, if afa)(KDK) C KDK,
then we have

ofa)'| K=afa| K},
hence ¢|K is nonsingular,
For any set FCC?% let us denote by aF the boundary of F.

Proposition 4.2. Let K be a closed subspace of H, K reducing
a. Then we have the relation

26(a,K) Co(a.H).

Proof. Let us choose a point 2 Eo(a,K) and suppose that 2¢o(aH).
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Then there is a sequence 2§ o(@X)Uo(aH) such that z,>z, as k.
If WweK®K is arbitrary, we can write

(ofz0)— of@))’ n= lim (afz) — (@) nEKDK,

therefore afz))-a(a) is nonsingular on K, which is a contradiction.

Corollary 4.3. If K, and K, are closed subspaces, reducing a,
such that o(aK)No(aK)=¢, then KinK.=0,

Proof. Indeed, XinK: is reducing a therefore
20 (a,-K'l sz) C O'(QKI) nO(a,K2) . @t
hetice

ola K\nK)=¢, thus KNK,=0.
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