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MEASURES GENERATED BY
DERIVATION BASES

Han Sco Kim and Young Mi Kim

1. Introduction

In 1982, B.S. Thomson suggested the following question [4,p164] : If
k is a monotonically increasing function on [0,), and k(0)=0, then
the function % - F>( | I'| )(| I| : the length of the interval I) represe-
nts a measure on R and k(B : Derivation bases, see definition 2.4)
again represents a2 measure on K that should be related to classical
p—dimensional Hausdorff measure. What is the exact relation here ?
About this question, S.Meinershagen in [2] defined three variational
measures and he examined the relationship between these measures
and Hausdorff measure. In this paper, we investigate some properties
of these measures. Furhermore, we define the rarefaction indices
of these measures and compare rarefaction index with Hausdorff dimen-
sion of some thin sets

2. Definitions and preliminaries

Let Ho={k | & : [0,00)>[0,00), monotone, increasing, continuous from
the right, and 2(0)=0} and let B(R) be the family of bounded subsets
of R.

Definition 2.1. ([2]) Let A€H, and any set EC[abl. For any
positive function 8RR, let B;={(Ix): x is a midpoint of IC(x—8
(»), x+8@)l.
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Vit BLED=sup{Euesh( | I | ) - n={(I.x)} is a partition of [ab]l in
P; and @Gx)enlE] if x€E). VoD (E)=ipf V(h*B;[E]). When V
(r*.DF[E]) is being considered as a measure rather than a variation,
it will be written by hyE).

Definition 2.2. ({2]). Let #, E and & be given as above and
let 8= 1{(Ix) : x is an end point of JC(x—8(x}, x+&(x))}. V(h*BLED)=sup
{Zam k(1 L 1) n={@,2)} is a partition of [gd] in Bs and (fix)EnlE]
if zE€E} and hyE)=inf V(h*pLED).

Definition 2.3. ((2]). Let & E and & be given as above and
let Br=iln) i TC (r-dppxrop). Vikspy (E=suplSeh(1L1) i n
={d,x)} is a partition of [ab] in BY and (Tx) € nlE] if x € E}
and hpe(B)=inf Vin*p{ [ED).

Definition 2.4. Let B={{x):I and x are associated by a rule
which determines how to choose the interval 1 in terms of the point
x}. A collection of such B’s is called a derivation basis. For example,
B={8; 18 is any positive function} is a derivation basis which is
called symmetric.

It is noted that hy(E)Shyy(E), hfE)<hyy(E), and hyE)<hE) if
k is concave down. If D'h(0)=co, then h;m(E)=oo. So we dose not
concern about khpe. In this paper, b —m(E)=limh-m{E)=YHminf {Zh
(121):ULDE 111 <8 and  is an interval } denotes the Hausdorff
measure. The rarefaction index corresponding to A-m is called Hausdorff
dimension and is defined by dimE=infla>0 @ ¢-m(E)=0}=supla>0 : &
m(E)=co}, where if h(x)=x°, then we write A(x)=c"
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3. Results.
Let k* be one of hy and h,,

Theorem 3.1. Let E be a bounded, ks measurable subset of
R and O<h-m(E)<w. Then hA-m(E}SHYE).

Proof. It is sufficient to prove that k-m(F)Sh;(F) for a closed
bounded subset F of E. Since A-m is regular, given £>0, there exists
a closed set F C E such that h-m(F)>h-m(E)-c. So h-m(E)—e<h—m(F)
<hyF)<h{E}-c.

Assume that hy(F)<oo and F C [gb]. Let & be a p081twe function
such that (r-5(xr+5r) C [abIN\F if x ¢ Faake 5)=23%2 ang
VO BiLF ) <h(F) +e.

Since k-m(F) is finite, there exists 8;>0 such that k-m(F)-e<h-m (F)
Put 8x)= m1n{6(x)8 }. Let nC By, where nlF1={T.x)}_, and %,
€F. Then FC UL ,I Therefore h-mﬂ’v‘)—e<h~m8°(F)<£"_ (| L)LV
(h* B, (FYS VI BLFI) <h(F)+e. Hence h-m(F)ShyF).

We can use the similar methods for Ay,

Lemma 3.2. Let hg € Ho and let E € BR). If hmhgg—o and
£E) <o, then K¥E)=0.

Proof. Let g;(E) =M< ow. There exists a positive function & such

that V("8 [ED<M+1. Since mg—{—)— for any €>0, there exists

o €N with E((_) > —Efor al 0<x<i Put 84x)= mm{ﬁ;(x)'-'} For

any positive function 858, let n={(Lx)}-, be a partition of E in
Bs. Then T, h(| L)< zé = ,g(lI|)_M 7 V@ 84LED
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<

p;.{_ 1 Vig* »le[E]ke. Hence V(h*plED<e and h;,(E)EO.

Similar proof holds for kg
If h(x)=x, then we denote h*(E)=h(E).

Theorem 3.3. There is a rarefaction index A such that for E € B(R),
() If O<p<A, then P(E)=w and
G} I p>A, then B(E)=0.

Proof. Put A=inf{p>0: W(E)=0}.

(i) Suppose that W(E)<wo for some O0<p<A. There exists p’ such
that p<p'<A. By lemma 32, A"(E)=0. This is contradict to the
definition of A.

(i) It is similar to @).

So we can define the rarefaction index A of A* like this ;s A=inf{p>0
L ME)=0=sup{p>0 : (E)=w}). We have A=0 if BE)=0 for all
>0, A=w if WE)=c for all p>0. When #* is hy we write
A=As, and when A* is hy, we write A=A,

Remark.

() AEISA(E) if EiCE,

(i) AEWE)=max{AE), A(E)).
(i) dim(E)<A by theorem 3.1

Lemma 3.4. (2], Corollary 42). I Il{ifnw h-fz((l‘%?{) 720 s
a symmetric interval about x) for every point x of £ and 2-m(E)<co,

then A%E)<co.

There are sets with the same rarefaction index as Hausdorff dimen-
sion
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Example 3.5(Cantor—like Set). Let C={x ER|z=x"_ %

u=IF
0,3). Then As=;.

Il

Proof. let h(x)=x% and let [ be any symmetric interval about
# €C. Let J be the largest contiguous interval of C in I Then
IC 1% and 7 C 48/, where J* is second Jarge contiguous interval
in J. So k(1] DSh=m(CAD@ ]| =74 then h—m(CAD<50).
Therefore

h—m(Cnl) E—m(Cnl) . h—m(Cnl) 1
WII1) Zh@8 | J 11> wadg 71y > wdl >

By lemma 34, hyCj<w. Hence AsS%- Since h—m(C)=1<hy(C), '%‘
<As.

By analogous methods, we can obtain the rarefaction index of Cantor
Ternary Set as g 2 .

log 3
The following example shows that there is a set with different
rarefaction index from Hausdorff dimension.

Example 3.6. Let 2(0)=#(07)=0 and D*h(0)=co. Then there is
a compact set E such that k;(E):oo and A-m(E)=0. In particular,
E(E)=c for all 0<a<]l and e*m(E)=0 for all O<a<l. Hence As=1
and dim(E)=0.

Construction. Let p=i,=1. L‘;=[0,1]. We proceed by induction.
Suppose that # is a natural number and that disjoint closed intervals
L;’"(i= 1,... 0. of length A.; are given. Since D*h(0)=c0, there is
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q.,EN such that qu(x”' ~—)>n. Since A(0")=0, there is an n.€
(Og) such that Zq,npﬂ kMm.)<1. For each ¢, let L be the closed
interval of length w. with the same center at J. Then L'CJ. Put

p»=24:pnt, la=n.. Then AX2" for each 7. Let E=n,(UL). Then
Zh(| L7 )—~,i>,;h(11,)<l for each n. Therefore h-m(E)=0. Furthermore,
hyE)=co. [seel2], Example 42]

Suppose f: I=[0,1]>R and P is a partition of [0,1]. 0=xeci<**
<x.=1. op)=max (¥-x..). The limiting strong hk-variation is defined
by V)= lim)gup = (| fe)f) ).

Theorem 3.7. Suppose f: IR continuous and let A& H, be conti-
nuous with smoothness condition (there exists positive, finite ¢, such
that h(0)<eoh() for 0<x<). Then KII<coVich

Proof. Given 1>0, there exists & such that Sup = (| ) —f
(x:) | )< Vi) +n and ' <h(s) for some s>0. Choose & such that k(S)=¢".
Let 8 be any positive function 85% and let m={TfaNl=, be a
partition of A7} in B;. Together with O and 1, the points &, 1<i
<m, form a partition P of [0,1]. Put m={LE€n!xx.>¢e} and m=n
\m. Since E(x.+z-x,)>;—:‘e 1, the number of m does not exceed }—
So X, _, A | L i )S—i' =¢g. Add further division points to the dxssectlon
Pywhere P,={x, | I.xt)Em}) to give a new partition P;, with oPy)<s,
containing no extra division point in (x.x) if %£EP,. Since |11

2 ! f(xs)-f(xu) l ,

Z RLI <X 12 | fe)fes) | IZaZ, h( a)fed 1)

Leny

<aE L h( ) 1 )Ze Vi +7).
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Therefore X0 k(| L1)SeteVih+m).
This theorem is not sharp.

Example 3.8. Let hx)=x and define f: [0,1]>R by AO=0, fx)=x
sin —for 0<x<1. Then Vi()=w and R (NS,
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