DERIVATIONS ON COMMUTATIVE BANACH ALGEBRAS

YOUNG-WHAN LEE AND KIL-WOUNG JUN

1. Introduction

If T is a linear operator from a Banach space X into a Banach space Y, then the separating space $\mathcal{E}(T)$ of T is defined by $\mathcal{E}(T) = \{ y \in Y \mid \text{there is } x_n \to 0 \text{ in } X \text{ with } Tx_n \to y \text{ in } Y \}$. Note that $\mathcal{E}(T) = \{0\}$ if and only if T is continuous, by Closed Graph Theorem. A derivation on a Banach algebra A is a linear mapping D of A into itself such that $D(ab) = a(Db) + (Da)b$ ($a, b \in A$).

In [6] Singer and Wermer proved that the range of a continuous derivation on a commutative Banach algebra is contained in the radical of A and conjectured that the assumption of continuity is unnecessary. In [2] Cusack showed that if any derivation D on commutative Banach algebra A has a nilpotent separating space, then the range of D is contained in the radical of A. But it is an open question that every derivation on a commutative Banach algebra has a nilpotent separating space.

In this paper we show that if there is a derivation on a commutative Banach algebra which has a non-nilpotent separating space, then there is a discontinuous derivation on a commutative Banach algebra which has a range in its radical. Also we show that if every prime ideal is closed in a commutative Banach algebra with identity then every derivation on it has a range in its radical.

2. Derivations on commutative Banach algebras

In [4] Khosravi showed that D is a derivation on a commutative Banach algebra A such that $\mathcal{E}(D^n) \subseteq R$ for all $n \geq 1$, then $DA \subseteq R$ where R is the radical of A. Note that $\mathcal{E}(D^n) \subseteq R$ if and only if $\phi \circ D^n$ is continuous for any multiplicative linear functional ϕ on A.

Received March 26, 1988.
We need the following lemma to prove our main results.

Lemma 1. Let A be a commutative Banach algebra with the radical R. If $D : A \to A$ is a derivation such that $\frac{x \mathcal{E}(D)}{x} = \mathcal{E}(D)$ for all nonzero $x \in A$, then $DA \subseteq R$.

Proof. By hypothesis, $\mathcal{E}(D) \subseteq R$ and so $\phi \circ D$ is continuous for all $\phi \in \mathcal{E}_A$, where \mathcal{E}_A is the set of all multiplicative linear functionals on A. Suppose that $\phi \in \mathcal{E}_A$ and $y \in \mathcal{E}(D(\mathcal{E}(D)))$. Let $x \in \mathcal{E}(D)$ with $y = \phi \circ D(x)$. Then there is a sequence $\{y_n\}$ in $\mathcal{E}(D)$ such that $x = \lim_{n \to \infty} xy_n$.

Then

$$y = \lim_{n \to \infty} \phi(x(Dy_n)) + y_n(Dx)$$
$$= \lim_{n \to \infty} [\phi(x)\phi(Dy_n) + \phi(y_n)\phi(Dx)]$$
$$= 0.$$

Thus $\phi \circ D(\mathcal{E}(D)) = \{0\}$ for all $\phi \in \mathcal{E}_A$. Since $\frac{\phi \circ D(\mathcal{E}(D))}{\phi \circ D(\mathcal{E}(D)^2)} = \mathcal{E}(\phi \circ D^2) = \{0\}$ for all $\phi \in \mathcal{E}_A$, $\mathcal{E}(D^2) \subseteq R$. Suppose that $\mathcal{E}(D^i) \subseteq R$ for each $i \leq m$ and $y \in \mathcal{E}(D^m(\mathcal{E}(D)))$ for $\phi \in \mathcal{E}_A$. Then there are $x \in \mathcal{E}(D)$ and a sequence $\{y_n\}$ in $\mathcal{E}(D)$ such that $y = \phi \circ D^m(x)$ and $x = \lim_{n \to \infty} xy_n$. Therefore

$$y = \lim_{n \to \infty} \phi \circ D^m(xy_n)$$
$$= \lim_{n \to \infty} \phi \left[\sum (D^{n-1}x)(D^i y_n) \right] \quad \text{(by Leibnitz rule)}$$
$$= \lim_{n \to \infty} \left[\sum (D^{n-1}x)\phi(D^iy_n) \right]$$
$$= 0$$

since $\phi \circ D^i(\mathcal{E}(D)) = \{0\}$ for $i < m$.

Thus $\phi \circ D^m(\mathcal{E}(D)) = \{0\}$ for all $\phi \in \mathcal{E}_A$. Since $\phi \circ D^m(\mathcal{E}(D)) = \mathcal{E}(\phi \circ D^{m+1}) = \mathcal{E}(\mathcal{E}(D^{m+1})) = \{0\}$, $\mathcal{E}(D^{m+1}) \subseteq R$. By induction, $\mathcal{E}(D^n) \subseteq R$ for all $m \geq 1$. By Khosravi Theorem, we have $D(A) \subseteq R$.

Note that if D is a derivation on a commutative Banach algebra A and $K_D(I) = \{x \in I : D^n x \in I \text{ for all } n \geq 1\}$ where I is an ideal of A, then $K_D(I)$ is an ideal, and if I is a prime ideal then $K_D(I)$ is a prime ideal [3].

Remark. By “Prime Ideal Theorem” in [1], we know that if D is a discontinuous derivation from a commutative Banach algebra
Derivations on commutative Banach algebras

A into itself, then there is a discontinuous derivation \(D_0=a_0D \) for some \(a_0\in A \) such that

1. for each \(a\in A \), either \(a\overline{\mathcal{E}(D_0)}=\mathcal{E}(D_0) \) or \(a\mathcal{E}(D_0) = \{0\} \)
2. \(I_0=\{a\in A|a\mathcal{E}(D_0)=\{0\}\} \) is a prime ideal in \(A \).

Theorem 1. If there is a derivation on a commutative Banach algebra which has a non-nilpotent separating space, then there is a discontinuous derivation on a commutative Banach algebra which has a range in its radical.

Proof. Suppose that there is a derivation \(D \) on a commutative Banach algebra \(A \) such that \(\mathcal{E}(D) \) is non-nilpotent. We may assume that \(A \) has an identity. Since \(\mathcal{E}(D) \) is a separating ideal there is a minimal prime ideal \(P \) such that \(\mathcal{E}(D)\subseteq P \) and \(P \) is closed [2]. Then \(A/P \) is a commutative prime Banach algebra. By the minimality of \(P \), \(K_0(P)=P \) and so \(D(P)\subseteq P \). Thus we can define a derivation \(\overline{D} \) on \(A/P \) by \(\overline{D}(a+P)=Da+P \). By Lemma 1.4 in [5], \(\overline{D} \) is discontinuous. By Prime Ideal Theorem there is a discontinuous derivation \(D_0=(a_0+P)\overline{D} \) for some \(a_0\in A/P \) such that for each \(a\in A \), either \((a+P)\mathcal{E}(D_0)=\mathcal{E}(D_0) \) or \((a+P)\mathcal{E}(D_0)=P \). But \((a+P)\mathcal{E}(D_0)=P \) does not happen for \(a\in A/P \) because \(A/P \) is an integral domain. Therefore for any nonzero \(a+P \) in \(A/P \), \((a+P)\mathcal{E}(D_0)=\mathcal{E}(D_0) \). By Lemma 1, we complete the proof.

Garimella [3] showed that if \(A \) is a commutative semi-prime Banach algebra with identity such that every prime ideal is closed, then every derivation on \(A \) is continuous. From this we get the following result.

Theorem 2. Every derivation on a commutative Banach algebra \(A \) with identity in which every prime ideal is closed has a range in its radical.

Proof. Let \(L \) be a prime radical of \(A \). Note that \(L \) is the intersection of all prime ideals and it contains of all the nilpotent elements. Then \(L \) is closed and \(A/L \) is a commutative semi-prime Banach algebra. Note that \(D(L)\subseteq L \) [2, Lemma 4.1], and it is easy to see that every prime ideal in \(A/L \) is closed. Hence we can
define a derivation D on A/L by $D(a+L)=Da+L$. Then D is continuous by Garimella Theorem and so $\mathfrak{E}(D)\subseteq L$ [5, Lemma 1.4]. Therefore $\mathfrak{E}(D)$ is nilpotent and Cusack Theorem implies that $DA\subseteq R$, where R is the radical of A.

References

University of Taejon
Taejon 302-120, Korea
and
Chungnam National University
Taejon 302-764, Korea