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SOME PERMANENTAL INEQUALITIES

Suxk Grun Hwang¥

1. Introduction

Let Q. and Pm¢, denote the sets of all n>n doubly stochastic
matrices and the set of all #x#n permutation matrices respectively.
For mxn matrices A=[a;], B=[b;] we write A<B(A<B) to
mean that a@;<b;(a;<b;) for all i=1,---,m; j=1,---,n. Let I,
denote the identity matrix of order », let J, denote the nXxn
matrix all of whose entries are 1/n, and let K,=#nJ,. For a
complex square matrix A, the permanent of A is denoted by
per A. Let E;; denote the matrix of suitable size all of whose entries
are zeros except for the (Z, 7)-entry which is one,

For an nxXn matrix A and for i, i, j,, -, 7.&{1, -, n}, let
Ay, -, 4,07, -+, 7)) denote the matrix obtained from A by deleting
the rows 7,,---, 4, and the columns j,, -, j..

For positive integral n-vectors R, S and nonnegative »x # matrices
A, B, let Ugs(A, B) denote the set of all #x#»n matrices .Y whose
row sum vector and column sum vector are R and S respectively
and such that A<X<B,.

The sets Uy (A, Bywith A<B<K, have been studied in [1] as
faces of the so called assignment polytope U, (O, K,).

In general, it is very hard to determine the minium and the
maximum values of permanent function on the set Up (A4, B) even
with some good restrictions on the vectors R and S as well as on
the bound matrice A and B.

A particular case of Ups(A,B) with R=S=(1,--,1), A=0,
B=K, is the set 2,, on which the minimum permanent is achieved
uniquely at /.. This result was conjectured in 1926 by van der
Waerden and proved by Egorycev in 1980, and now is called the
van der Waerden-Egorycev’s theorem in the literature.
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Marcus and Minc [6] conjectured that, for any AeQ,, n>2,
nf,—A ‘
per(—n—_T—-)gper A

with equality if and only if A=], for n>4, and proved their
conjecture for positive semi-definite symmetric doubly stochastic
matrices.

In [7], E.T.H. Wang proved Marcus-Minc' conjecture for the
case of #=3 and proposed a conjecture asserting that

per(%)ﬁper A
for all A=Q,, n>2.

Marcus-Mine' conjecture was proved to be true for the case of
n=4 by T. Foregger [4]. Both of these two conjectures are true
for doubly stochastic matrices in a sufficiently small neighbourhood
of /. because of the van der Waerden-Egorycev's theorem. Recently,
D.K. Chang [2], [3] has proven the validity of these two conjec-
tures in the complement of a sufficiently large neighbourhood of J,
by showing first that

" 71],,—-/1 < d,,
M pet( n—1 )z (n—1)"
where d, denotes the n-th derangement number #! ?: (_Dk and
nl,+A nl.+1,
@) per( nr1 )éper( nt )

for all A=Q,, n>2.

Let E,=(1,---,1), the n~tuple of ones. In this paper we deter-
mine the set of permanent-maximal matrices in (Ugs(A, B) along
with the maximum value of the permanent function for the case
of R=S=(m—1DF, A=0, B=K, or of R=S==(nt+1E, A=K,
B=2K,, by a simple combinatorial argument. And as a corollary,
we will have the following permanental inequality;

nf.+A 5 (H1F
(3) per( n+l )’“ (n+1) kzo k!
for all A=Q,, n>2, where the signs -+, — occur in the same
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order,

Notice that the inequality (3) is the conbination of the inequali-
ties (1) and (2). In addition, we also show that equality in
(3) holds if and only if A=Pmt,, for n>4.

Finally, we find out some subclass of @, over which the two
conjecture are valid,

2. Maximum permanent on U, (A4, B)

In this section, we obtain the maximum value of permanent on
Ues(A, B) and find out the matrices in (Ups(A, B) at which the
maximum value is achieved for the case of R=S=m®—1)E,, A=0,
B=K, or of R=S=n+1)E,, A=K, B=2K..

For this purpose only, let

Ur= (X =[] By =n—1 (i=1,-,m), O<X<K,),
U= (X=[x]| By =n+1 (i =1-,m), K,<X<2K.).

Lemma 1. The permanent function attains its maximum on each
of U.., and U,,, at an integral matrix.

Proof. Let A=U, | be such that per A= per X for all X&U,_,
with as few non integral entries as possible.

Suppose that A is not an integral matrix, Then there are i, j
such that 0<{a;<(1. Since the i-th row sum of A is an integer,
there is some /, /==, such that 0<{ay<1. For a real number e
with sufficiently small absolute value, let A.=A-+e(E;—Ey). Then
A.=U, , and

per A, =per A+e(per A(i|7) —per AGID)).
Hence it follows that per A(i|j)=per A(¢|l). Therefore f(¢)=per A,
is a constant function of e. Now, by choosing a suitable ¢, we
come to get a permanent-maximal matrix A.=U,., with strictly
fewer non-integral entries than A, contradicting the choice of A.
Thus the assertion for U,., is proved.
Similarly, we can prove the lemma for U,...

Lemma 2. Let UF, U}, denote the sets of all integral matrices
in U,_,, U,., respectively. Then
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(1) For all A=U,, perAgn"ZO ( ) , with equality if and
only if A=K,—P for some Pert,,, Jor n>4.

(2) For all AcU,%, per Agn'Z T with equality if and only
if A=K,+P for some PEPmtn.

Proof. (1) Let U=[u;]&U*, he such that per X<per U for
all XUk, Notice that every row of U is an s-vector all of
whose components are 1's except for exactly one which is 0. Let
C=(cy, -, ¢x) be the column sum vector of U. Without loss of

generality, we may assume that c¢,=max{c, -, ¢} and C,=min
{e1, ;). Then ¢,>n—1 and ¢,<n—1.
Suppose that ¢,>#n--1. Then ¢;=n so that u,,=-=z,=1. Since,

in this case, ¢,<n—2, we may also assume that #,,=1,,=0. Then
it follows that per U(1]1)<per U(1]2). Moreover if n>>4, per U
(1D <per U(112). For, if n>5, then per U(1,211,2)>0 by
Frobenius-Konig's theorem. If 2 4, per U(1,2]1, 2)=0 only if
U(1,2]1,2) has a zero!column so that U must he’ permutation
equivalent to

1 01 I
1 61 1
1 110
L 1 1 0

But, if it is the case, per U=8<9=per(K;—1,), which is impossible
because of the choice of U and because K;—I,e=U,_,.

Let H=U~E,;+E,,. Then HEU}, and per H >per U. If n>4,
we have per [ >per U, contradicting the maximality of per U.
Therefore it must be that ¢;=n-—1 so that ¢=n—1)E,, in which
case it must be that U=K,~P for some P=Pmt,.

In the case n=3, if the column sum vector of H is different
from 2F;, then we do the same job as above to get a matrix
McUX, with row sum vector 2E, and per M>per . But then
M=K;—P for some P=Pmt, and per M=per I/ by the maximality

of per U. Now since per(K,—P)=per(K,—1I,) ::n!;‘_jn[(——l)",/k!] for
all P&Pmt,, the proof is completed.
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(2) Again let U= U,% be such that per X<per U for all Xe&U>X,
and let C=(cy, -, ¢,) be the column sum vector of U. Notice, in
this case, that every row of U is an n-vector, of the components
of which #—1 are 1's and one is 2. Since U is a positive matrix,
every submatrix of U has positive permanent. With these facts in
mind, we can show that C=(n+1)FE, regardless of whether #>3
or not by a similar argument as the one used in the proof of
(1). But then U=K,+P for some P<Pmt, Now the assertion

(2) follows because per(Kﬁ—P):per(K,.wL[,.)::n!k%(l/k!) for all
P=Pmt,.

Since, for every P=Pmt,, K,—PE U, 15, e, (0, K,) and K,+
PeU,. 5, ;e (K., 2K,), the combination of lemmas 1 and 2 tells
us that, for every A= U, ,p, o1, (0, K,), per A<per(K,—P), and

for every AS U .pe, cninse, (K, 2K,), per A<per(K,+P). Thus we
have proven half of the following

Tueorem 3. (1) For any A= U, e, 018,00, K.,
per Agngz";_(;l_)_k_
i1 KR!

with equality if and only if A=K,—P for some P=Pmt,, if n=>4.
(2) FO?’ any AEU(H+1)E,,,(71+1)E,,(KH’ 2K")’

per Agn!kﬁ%’—

with equality if and only if A=K,+P for some P=Pmt,.

Proof. We need only to show that, for n=>4, every permanent-
maximal matrix on U, is a (0, 1)-matrix. Suppose that there is
a non (0,1) permanent-maximal matrix A=[g;] in U,.,, then we
can pick up such an A with exactly two non integral entries
which are in a same row, say a,; and a,,, Then, by Lemma 2,
we may assume that

aulalz 1.1
|1

A—— f Kn—l_In—l
]
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showing us that per A(1]1)<per A(1]2) and hence that for g,
0<Ze<<min {ay,, a1,}, per(A-+e(FE,—E;))>per A even if A+e(F,
—Ey)eU,.,, a contradiction. Therefore there can not be such an
A and the proof is completed,

Since {—L FAIAE U, s, 018,00, K} = {K"‘ 5 |5=0,} and

. 1 - K, iS
since | AIAS Uiy e, (I, 2K} = [ HES 520 ),
We have the following

Corovrary.  For any S=4Q,,

nf.,—S (=D
D per( 452 )< O Y
with equality if and only if SSPmt, if n>4, and
- A .S\ - nl Lol
@ I)OI( n+1 >i (n+1)" 1§0 k!

with equality if and only if Se<Pmt,,

3. Permanents of partly decomposable matrices

In this section, we are to show that every partly decomposable
doubly stochastic matrix satisfies the Marcus-Minc conjecture and
Wang's conjecture.

An nxXn matrix is called partly decomposable if it contains an
$X1 zero submatrix with s+47=n,

Let D be an nxn (0,1)-matrix with per D=0, then Q(D)=
{(X=0Q,| X< D} is a face of @, [5].

Let p,q be positive integers such that p+g=x. Suppose that

D:[{S” ](().] isa (0,1)-matrix. It is known that [,®J, is the

unique permanent-minimal matrix on 2(D). (see [5], for example).
From now on, in the sequel, let ¢*==Fk!/k* for k=1,2, -

Tueorem 4. Let A be any partly decomposable matrix in Q,
then per A>d.-, with equality if and only if A=P(,DJ,.)Q for
some P,Q&Pmt,,
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Proof. Let A=, be partly decomposable such that per A<per X
for all partly decomposable X<, Then A= J:PJ, for some
integers p,q with p,¢>1 and p+g=n, so that per A=¢,0,. We
are to show that either p=1 or g=1. Suppose that g>p>1. Then

5"“5““:< pél )»—1( q+q—1 >q5P5q<5’5“

showing us that per(],,_l@],m)<per(fp@]q), Therefore it must
be that p=1 by the minimality of JsBJ,, and we are done,

To prove the validity of Marcus-Minc conjecture and Wang's
conjecture for partly decomposable doubly stochastic matrices, it
suffices to show only that

n! Y (1D
ey & A S0

where the signs +, — are written in the same order., But since

no(—1)* Lo(—D* _ 3 3 "
1:4—;‘0 k! élg:ﬂ k! ] and 8 n_l"<1 for n>4,

we have
n - k .
I i e

7!
(n—1)" s 8 n—1

On the other hand, we have, for all n>2,

() =) -

that is

Thus we have

e Erdr<(p)aca,

since 5,,4:( L )n_ O
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Since Marcus-Minc conjecture is already known to be true for
n=3, by the above discussions we have the following
Tuecrem 5. For any partly decomposable S=Q,, n>2,

per(%%)ﬁper S

where the signs -+, — are written in the same order.
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