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JOINT SPATIAL NUMERICAL RANGES OF OPERATORS
ON BANACH SPACES

YouncoH YANG

1. Introduction

Throughout this paper, X will always denote a Banach space over
the complex numbers C, and L(X) will denote the Banach algebra of
all continuous linear operators on X. Operator will always mean
continuous linear operator. An n—tuple of operators Ty, .-, T, on X
will be denoted by T = (T;, -, T,. Let L*(X) be the set of all
n—tuples of operators on X. X’ will denote the dual space of X, S(X)
its unit sphere and /#(X) the subset of XXX’ defined by

H(X)={(z, ) eX XX : |lzl|=| flI=f(2)=1}.
For each TeL(X), we let T* denote the dual cperator. Given a subset
B of X, we let B denote the closure of B. If z=(z,, -, 2,) €C? we
let [=]=(21=[%1%

Let T be an operator on X. It is well known that the spatial nu-
merical range V(7T) of T is not closed, not in general convex, but that
it is always connected [1]. Also V(.) is a continuous mapping of
L(X), endowed with norm topology to the set of compact subsets of
C, endowed with the Hausdorff metric topology. In this paper, we
will define joint lower numerical range LV (T) of TeL?(X), and study
the relation between this concept and joint spatial numerical range
V(T), continuous properties of several mappings related to joint nu-
merical ranges and analogous topological properties (connectedness,
closedness etc) for an n—tuple of operators. Finally we will give some
problems about joint spatial numerical range.

2. Joint spatial numerical ranges

Let T=(T,, -, T,)€L*(X) be an n-tuple of operators on X. The
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joint spatial numerical range, joint operator norm and joint spatial nu-
merical radius of T respectively are defined by
V(D) ={(f(Th2), -, f(T,2)) €C™ : (2, F) €N (XD},

1T ll=sup {(SITzl®) 2 =1, z€X],
and -

V(1) =sup (1212 ¢ (=, -+, 2) € V(7))
respectively ([3], [7]). We also define another joint operator norm
of T by m:(ilemuz)w. Clearly »(T)y < T)1< 7.

Given z€S(X), let D(X, z)={feS(X’) : f(z)=1}, and V(T,z)=
{(f(Twx), -, f(T,x)): feD(X,z)}. Clearly by the Hahn-Banach
theorem, V(T,z)#¢, V(T)=U{V(T, z) : z€85(X)}, and V(T) is
a nonempty and bounded subset of C=.

Given ay, -+, a, of a unital normed algebra 4, let V(A ; ay, -, a,) =
{(flay), -, fla)): f€A, fF(A1)=]fll=1} denote the joint numerical
range of aj, -+, a, [1]. Clearly V(A; ay, -+, a,) is a compact convex
subset of C*. Also for each n~tuple T'= (T}, -+, T,,) of operators on X,

V(TYcV(BX) ; TY=VBX) ; Ty, -, T,).

Lemma 2.1. Let z€8(X) and T=(T,, -, T,) €L"(X) be an n-tuple
of operators on X. Then V(T z) is the set of all A= (), ---, 3,) €C"
such that for each i=1, -+, n,

| A= i} <W(Ty— D x| (pe= (pq, -+, ) €C?).
Proof. The proof is similar to that of Lemma 15.1 [2].

Let Xp denote the space X regarded as a Banach space over R.
Then the mapping f——> Re f is an isometric real linear mapping of
X’ onto X%, and the mapping (z, f) — (x, Re f) maps 7/(X) onto
I(Xg) [2]. From these facts, we obtain the following result.

Tueorem 2.2. Let T=(Ty, -+, T,) €L*(X), and Ty denote T regarded
as an n—tuple of operators on Xp. Then
V(TR)=Re V(T)={(Re f(T12), -+, Re f(Tpz)): (z, f) €M (X)}.

Lemma 2.3 ([2]). Let X, Y be metric spaces with Y compact, and let
¢ be a mapping of X into 2Y such that ¢(z) is closed for each z<X.
Then ¢ is upper semi—continuous (u.s.c) if and only if

2,€X, y,€¢(z,) (n=1,2,...), z=limx,, y=limy, imply y=¢(z).

n-+c0 n-o0
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From this lemma and the similar method of proof in Lemma 15.8
[2], we obtain the following result.

TueorREM 2.4. For each TeLr(X), the mapping t—>V (T, z) is an
upper semi-continuous mapping of S(X) with the norm topology into the
nonvoid compact convex subsets of Cn.

L"(X) becomes an algebra with involution if we define all the
operations componentswise. In particular, if
S=(8;, =, 8,) and T= (Ty, -+, T,) are elements of L?(X), we have
S¥=(S,*, e, 8,%), ST=(S8,Ty, -+, S,T,), and a norm is defined by

iTl=sup ((S|Tiz[92/2 : z€X, |la]=1}.

THEOREM 2.5. The mapping T — V{(T) is a continuous mapping
Srom L*(X), endowed with a norm topology to the set of compact subsets
of C* endowed with the Hausdorff metric topology. Also v(.) is a
continuous real-valued mapping on L"(X).

Proof. Let §=(S,, -, S,) and T= (Ty, -+, T,) be any elements of
L*(X). If |S—7|<e and (z, fYel (X), then
| (f(812), +e, £(Sux)) — (F(Tha), -+, F(Tp2)) |
= (fU(S;—=Ty)x), =+, F((S,—TW)z)) |

=(EIFUS=Ta) Hve<|$—T,

and so
(f(812), =, f(Sp2)) = (f (Th), -+, f(T,2)) +
(fUS1=Tyz), =, F((S,—Toz))
e V(T) +e.

Thus V(8)<=V(T)+ (). By symmetry, V(T)cV(8)+ (). Thus
1S—T||<<e implies d(V(S), V(T))<e, and V() is a continuous
mapping from L?(X) to the set of compact subsets of C”, endowed
with the Hausdorff metric topology.

Also v(8) <v(T) +e and v(T) <v(3) +¢ imply |v(S) —v(T) | <e.
So v(.) is a continuous real-valued mapping on L*(X).

Given an a—tuple T'= (T, ---, T,) of operators on X’, the joint lower
numerical range LV (T) of T is defined by

LV(TY={((T Nz, -, (Tuf)z) : (z, f) =T (X)).
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THEOREM 2.6. Let T= (T}, ---, T,) be an n—tuple of operators on X'
(not necessarily commuting'). Then

LV(TYcv(T)cLv(T).

Proof. Let i denote the canonical image in X” of z€X. Then
(z, ) el (X) implies (f,2)eM(X"), and so (T;f) (x)=2(T;f)
(7=1,--,n). Hence LV(T)cV(T).

Let A=(;, -, 4,) € V(T) i.e., for each J=L1 o n, A=¢(T;f)
with (f,¢) €/ (X’). Let ¢ be an arbitrary number with 0<(¢e<’1, and
let X, denote the closed unit ball of X. Since £ 1 is weak*-dense in
X", there exist z€ X, with

16(F) =2 <(e/2)% (T f) —2(T; )| <el vn (j=1, -, n).
We have zeX;, feS(X’), and |1—f£(z)|<(e/2)2 Therefore by the
Bishop~Phelps-Bollobas theorem [2], there exists (y,g) €l (X) such

that |ly—z[l<le, l|f—gll<le. Then (Tg)(3)=(T1g)y, -, (T,g)y) &
LV(T) and

|2—(T¢) (y)lﬁu—:ﬁ('f’f)l-#l(ff) ()= (TF) (3]
1 (TF) () —(Te) (0|
Ze+| Tlllz—l+ 1T 1 F—gll
<e(1+2|7T)).
Since ¢ is arbitrary, A LV (T).

CoroLLARY 2.6. For each T=(Ty, -, T,) €L*(X), V(T)c V(T*)
<V (T).

Proof. This follows from the above theorem and the fact that
LV (T* =v(D).

The following example shows that we can have V(7)== V(T%*).

ExampLe 2.7. Let X=¢, and define T€B(X) by
(T2) (1) =5 27412(n+) (2=1,2,3, ). Then V(T, T)+ V(T*, T*)
Le, V(T)#V(T*) for T=(T, T).

Proof. It is clear that ||Tz||<{1 for |lz||=1, and so (1,1)& V(T).
With the normal identifications, X’'=I!\, X”"=[*, and (T*f) (n)=
32601 f(B) (1=1,2,...). Let fEX’, X" be defined by f(n)=0,],
¢(n)=1 (n=1, 2, ...). Then (f,¢) &M (X’) and Q,1)=(g(T*f),
¢(T*f)) e V(T*).
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Let (X, |-} denote a complex Banach space and let N(X) denote
the set of all norms on X equivalent to || - |. Given p,qeN(X), we
define u(p,q), d(p,q) by

u(p, @ =inf{6=1:1/6<p(x)/q(z) <o, z€X—{0}},
d(p,q) =log u(p, q).
We note that 4 is a metric on N(X), and (N(X),d) is complete [2].

From now on, it is convenient to denote also by p the dual norm
of p. The set 7, is then defined by

Hy={(z, HEXXX : p(x)=p(f)=f(2)=1}, and given T'=
(Ty, o, T LX), V,(T)={(f(T1a), =, f(T,2)) : (z, ) EH,}.

Tueorem 2.8. The mapping p——> VP(T) 15 a continuous mapping
Jrom N(X), endowed with the above defined metric d to the set of
compact subsets of C”, endowed with the Hausdorff metric topology.

Proof. With £>1, we let G, ={peN(X) : u(p, || - )<<«}. Then
by Theorem 18.3 [2], p — /I, is uniformly continuous on G,. Given
e>>0, choose 9>>0 such that p, ¢=G,, d(p, ¢)<6 implies d(7T,, 1) <e.
Given A= (A, -+, 4,) €V, (T), we have A=(f(T1z), -, f (T,z)) for
some (x, f)€Ml,. Then d((z, f), 1,)< ¢ and so there exists (y, g)
€1, with lz—y[| 4+l f—gll<e. Then

| (& (T1y), o0 g(T3)) — ([ (T12), ..., F(Tp2)) |

<@ (T1y)y ooes (To3)) = (f(T13), ovy F(Ta)) |

1 T13), s F(T)) — (F(T1), ooy £ (To)) |
g—FINTIIy ATy —=l .

<llg—f1 Tl a+x] Tlily—ali<ex| T,
Thus sup {d(4, V,(T)) : ic Vq(’j”)} <ex|T|, and by symmetry,
sup {d(4, V,(T)) : A& V,(T)} <ex|T|. Hence

d(V,(T), V,(T)) <ex| T|.

IN

3. Topological properties of joint numerical ranges

For every TeL(X), it is well-known that the spatial numerical
range V(T) of T is not in general convex, not closed, but that it is
always connected. The norm X weak* topology is defined as the product
topology on X XX’ given by the norm topology on X and the weak*
topology on X’ [1].

Lemma 3.1. Let 7y denote the natural projection 7:1(z, f) =z of XXX’
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onto X, and for each p=N(X), let E be a subset of I, that is relati-
vely closed in Il, with respect to the normXweak* topology. Then 7,(E)
is a norm closed subset of X.

THEOREM 3. 2. For each peN(X), T, is a connected subset of X XX’
with the normXweak* topology unless X has dimension one over R.

Proof. The proof is similar to that of Theorem 11.4 [1].
CoroLLARY 3. 3. For each PEN(X), V,(T) is connected.

Proof. We have

f(Tiz) =g (T | <p(Tix—~Tip) + | (F—g) (T:3) |

((z, ), (y,e)€ll,, i=1,2, ....,n). Therefore the mapping (z, f) —
f(T:z) is a continuous mapping of I, with the relative norm X weak*
topology onto V,(T,). Since the natural projection z; : C* —— C is
continuous, the mapping (z, f) — (f(Tyx), ..., f(T,x)) is a con-
tinuous mapping of /7, with the relative norm X weak* topology onto
V(T). By the above theorem, V(7T) is connected, except perhaps
when X has dimension one over R.

Finally let X have dimension one over R, and take x€X with
p(u)=1. Then every z&X is of the form z=Cx with p(x)=1{], and
for every feX’, we have f(x)={f (), p{fY=1f()|. Let g be the
functional given by g(z)={ (z={ueX). Then S(X)={u, —u}, and
I, has exactly two points (u,g) and (—u, —g), and so V(T) has
exactly one point (g(Tu), ..., g(Tu)).

CoroLLARY 3.4. Let F=(Fy, ..., F,) be an n—tuple of continuous
mappings of S(X) into X, and for each p&N(X), let Vo (F)=
{(f(F1z), o, f(Fp2)) : (z, f) € ). Then V,(F) is connected, except
perhaps when X has dimension one over R.

For each n-tuple T=(Ty, ..., T,) of operators on X, the joint
numerical range W(T) of T is given by
W(T) = {(([T1z, 2], ..., [Tz, z]) : |zl =1},
where [, ] is a consistent semi-inner product (s.i. p) of Lumer [6].
It is easy to see that W(T)cV(T)cV(B(X) ; T, and V(7T) is the
union of all numerical ranges W(7T') corresponding to all consistent
s.1.p’s on X. However, V(T)=W(T) in case of smooth space.

From the following example, we see that W(7T) is disconnected.
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Examrie 3.5. Let X=C? with the sup norm ||z|l=max ({&;], |Z%])
(z=(G, L) €X), and let [z, y] be defined for o= (2, %,), y= (11, 72),
by

_ G o GE 1] =131,
G GE <D,
Then [, ] is a s.i.p on X, and [z, 2]=|z|l*. Define the operator
T; by T;x=(4,0) (z=(G, ) eX, j=1, 2). For each 2-tuple =
(T, Ty), we have

W(T) =W(Ty, T2)={(0,0), (1,1)}. For if lz]|=1 and |{;|=1,
then ([Tyz, 2], [Tha, z])=(G4* LG4 =1, 1), and if |lz}|=1 and
[Z:1<1, then

([T12, 2], [Toz, 27) = (0%:*, 05*) = (0, 0).
Thus W(T)=1{(0,0), (1, 1)} is disconnected.

The following example shows that V(T) is not closed as well as
V(T) in single operator case.

ExameLe 3.6. Let X=/2 and let S be defined by S(zy, x5, 23, ...) =

(z3, %xz,% 3, ...). We consider the tensor product of operators T;

(/=1,2) on the tensor product X®X defined by T)=S®I, and T,=
I®S. Then V(T)=W(T,, T2)=W(S)XW(S) =(0, 17X (0, 1], and
so V(T) is not closed.

Now we have the fo]lowing problems.
Remarks 3.7. (a) For what Banach space X and TeL*(X) is V(T)

a closed set?

(b) Let K be a compact simply connected subset of €. Is there some
space X and T'eL*(X) such that V(T)=K?

(c) For what Banach space X is V(T) convex for every TeLr(X)?
(d) Is V(T) always simply connected for every TGL"(X)?
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