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A METHOD USING PARAMETRIC APPROACH WITH QUASI-
NEWTON METHOD FOR CONSTRAINED OPTIMIZATION

Yong-Joon Ryane aAnp Won-Serk Kiu

1. Introduction

This paper proposes a deformation method for solving practical
nonlinear programming problems. Utilizing the nonlinear parametric
programming technique with Quasi-Newton method [6, 7], the method
solves the problem by imbedding it into a suitable one-parameter family
of problems.

The approach discussed in this paper was originally developed with
the aim of solving a system of structural optimization problems which
frequently appears in various kind of engineering design. It is assumed
that we have to solve more than one structural problem of the same
type.

If an optimal solution of one of these problems is available, then
the optimal solutions of the other problems can be easily obtained
by using this known problem and its optimal solution as the initial
problem of our parametric method.

The method of nonlinear programming does not generally converge
to the optimal solution from an arbitrary starting point if the initial
estimate is not sufficiently close to the solution. On the other hand,
the deformation method described in this paper is advantageous in that it
is likely to obtain the optimal solution even if the initial point is not
necessarily in a small neighborhood of the solution. The Jacobian matrix
of the iteration formula has the special structural features [2,3].

Section 2 describes nonlinear parametric programming problem imbed-
ded into a one-parameter family of problems. In Section 3 the iteration
formulas for one-parameter are developed. Sectior 4 discusses parametric
approach for Quasi-Newton method and gives algorithm for finding the
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optimal solution,

2. The parametric problem

The nonlinear programming problem to be solved is assumed to have
the form:

minimize f(z) 1)
subject to g(x)=0,

where z is an n—-dimensional vector with components z,, z3, ..., z,. The
functions f: R* > R and g= (g, g2, ...g,) : R*—R™ iare twice conti-
nuously differentiable in z.

We suppose that the vector z° is known to be an optimal solution
of the problem:
minimize  (1/2)|lz—z°|}2 )
subject to g(z) —g(z°)=0
where the problem (2) has same as f(z) and g(z) in (1). In practice,
the solution of (2) may be considerably easier to obtain than that of

1.
The parametric problem we consider here is
minimize (1—e ™) f(z)+ (1/2)e7||z—2° |2 ®)
subject to (1—e*) g(z) +et(g(z) —g(2°)) =0,

where ¢ is a scalar parameter. It is verified that (1) and (2) are
identified with (3) for ¢t =oc0 and ¢#=0, respectively. Therefore, an
optimal solution of (1) may be obtained by solving (3) parametrically
as ¢t increases until £==co with the initial condition z=2° for ¢=0.

Consider the Lagrangian for problem (3), i.e.,

Lz, 4, ) =tf(z) +(1—1) (1/2) |lz—2° [P+ (g (2) —(1—)g(2°)), (4)
Lz, 4, ) = Q=) f(x) +e*(1/2) llz—2° 12+ 2 (g (z) —e'g (2°)), (B)

where 2 is multiplier in R”. The equation(4) and (5) are equivalent
for t—1 and t— oo,

3. The iteration formaula

The gradient with respect to z,2 can be expressed by
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The following Lemma [4] will be fundamental to our convergence
analysis.

LemMa 1. Let the one—parameter imbedding be
b()G(x) +rg(x)A
Pz, 3, £)=|OFVf@+ ] 0=, 7
N O Y [ @
where we assume that a,b,¢: [0,1]>R;, G, H: R* —Rn,
P(s, z,t)=(7f(x>+7g(x”], and P(c°,%°,0) =0,
L g(x)

z°€R", X ERm If x(t), A(t) are solutions of the equation p(z, A, £) =0
Sfor all t€[0, 1], then, by the implicit function theorem, z(t),A(t)
satisfies

Pen(@®, 1,5 Y= 1 p ), 200,00 ®
d(;; 2 — P (@), A1), 8) 1P, (x(2), A(2), £) 9)

Conversely, If z(¢), A(t) are solutions of (8) on [0,1], then
d
< (@(®), 40, H=0 for t<[0,1].

Hence P(2(1),A(1),1)=P(2°,2°,0) =0 and so x(1), A(1) are solution
of
@A,
g(x)
We consider the following equations

_[A=8)(z—2°) +trf(z) +Pgx) A

Pera=[ 0 el ] 10
_Jet@—2°)+ A —e )P flz) +rg(z) A

P(I: 2: t)_[ g(x)+e_‘g(x°) ] (11>

We calcuate
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| dz |
dp . dt
—(};—_PtT(anPI) an
| de _
_[—eHa—a®) +epf(2)
L —e tg(z°) }+
| dx
{e"‘IJr (A—e)p2f(a) +rg(2)A Vg(x)] N (12)
) Vg(x)T 0 dar
_dt _
=0
and obtain the differential equation
R
dt _ _[e“l-i* (Q—e ) p2f(x) +12g(x) A [7,5:(.1)]‘1 )
an pg(a)T 0
_dt _

75 7@ a3

Using Euler’s rule, the differential equation (13) motivates the
iteration formulas

xk"‘l xk‘]
[zm]:{zk |

[TEAS ORI PR prE

g (zh)T 0
7 f(zt) +pg(ak) 2k
[ g (z*) } o
[xkﬂ:l _ [xkj _[(1 —tk) I+tk72f(xk> g (xk) AR Vg (Ik)"-l )
T T peoT o
Ff(xh) +p g (k) Ak
[ g () jl =

Condition for existence and uniqueness of solution of the differential
equation (13) on ¢ are given by [1,5]
t* is chosen by appropriate selection rule, an example of which can

be described as follows [1].

Lemma 2. Let h: R—R be a twice continuously differentiable func-
tion satisfying
r(1)=1, A (1)=0.
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If we can take the sequence {t*} by
tHl=h() =1—a(t*—1)2, 3<a<l with |t,—1|=1, (16)
the iterates of (16) converge quadratically to 1.

Condition for existence and uniqueness of solution of the differential
equation P (x(z), A(¢),¢)=0 on t are given by [1,7]

4. Parametric approach for Quasi-Newton method

A Quasi-Newton method on the formula (14), (15) must have the

form [f:‘?}:ﬁz]—h?, where BS=— [Vf(x)g‘tf)g(x) RJ-

If we set K= (1—t¥)I+t*V,, and partition B into

(K1 1\1”1] {K;‘ Nk]
Bi=—
Bpoi= !-Mkn B0,
[Kp Ny [Pk .;___[dk] Bi.-S z[dk—-l_dk]
‘.,AM& 0 _ [#7] 2 Ck_, k+10k Ck ,.1—Ck

then it is easy to calculate matrices (M, N, B) with respect to ¢,
respectively, We now have

[(1"—tk+1)1+tk+lVk+1]PlzJ‘_Nk-‘AIQk:dkH_d/u M1 Pp=Cpy1—C,,
[(A—=t¥" D I+* V| Py=dpr—dp—Tpai"qe, My Pr=Jp1 Py,

where (1—#)1-+#V, and (1—#*)I+#"1V, ; are symmetric,

Nepi=Mp\7, My, =Jp.;, and N =JqT. Thus it follows that
My =M+ (Zy— MyPy) Py,

where Zk:Ck+1_Ck and Pk: (]./PkTPk)Pk.

Also, we obtain

(1=t I+ 4 1V

= (1=t I+ Vit (9 PyT -+ PryiT)

— (1—2%) (PiPyT+ PyPyPyT)

“-tk(VkPkPkT—T‘PkP]ZTVD —20PkPkT,
where

20=P;Ty;— P ( (1—t’¢)1+t"Vk) P,

=Py~ (1—t5) PTPy—t* P Vi Py

and

yi=dpe1—dp— M1 qp
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Since B;,; now leads to the following formulation
B =By ta” + B,

where

= !Vyk— ((l—tk) I+t V]z) Pk“—ﬁpk}

B L Zy—M,P,
_rP k}
A= o )
On the basis of the iteration formula (14), (15), we state the

following algorithm.

ALGORITHM.
step 1: Obtain an optimal solution (z°, 2°, £°) of problem (4) for
t=0 by an appropriate method.
Set £#=#° and compute B..

step 2: Find s; such that BkSkz—[dﬂ

o
step 3: Determine
A1 ok
[ﬂﬂ]:[%J+5k
step 4: If t=1, terminate.
Otherwise, compute B, #**!=ha(t*) and

set k=£k--1,
go to step 2.

In the following we deal with convergence of sequences. The local
convergence of the iteration (15) follows from results of Ortega and
Rheinboldt as stated below.

TueoreEM 1. Let z*ER* be a solution of (1) with associated Lagrange
multiplier A* and let N be a sufficiently small neighborhood of (a*, %),
If (2°,2°)EN and {t}} >1, then the iteration (15) remains in N and
converges to x*. If lkim (t} =1, then (15) is Q-superlinearly to z*.

proof. Ortega and Rheinboldt {8, p. 357

TueoreEM 2. Suppose that h satisfies (16) and {t*} defined by (16)
converges to 1. From (15), (16), the sequence {x*, 3, t*} converges
locally to {x*, A%, 1} and the convergence is Q—quadratic.

Proof. Using a parameter selection function (16) we introduce the
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operator S defined by
Szt Ak th) =
[-rk]_[(lﬂk)lﬂkﬂf(x") +2g (o) r’g(x’e)]—l ,

AR g(z®hT 0
(Vf(:rk) +rg(ah)”
LogT@

If the operator 7 is defined by T(z, A, ) = ((z, 4, t), A(2)),
where T : R"*7"1— Rntm*1 then Taylor’s theorem and the Schwarz
inequality gives
1T (2%, 28), ) — T ((2%, %), 1|
= (U2 P?T ((a*, 2%) +0 (2t —z*, =253, 1+ (1—24)]| -
[| (2%, A%, £5) — (2%, 2%, 1) ||
Hence we have
. TN Ay P e i LIS DY
tim H Exk, pLyp. (.T?k, z*(: 1) e
for ¢ between 0 and 1. It means that the rate of convergence is Q-
quadratic.

5. Concluding remarks

In this paper, we have proposed the deformation method for solving
nonlinear programming problems. It has been assumed that the optimal
solution x(#) of problem (1) is continuous with respect to ¢. In fact,
the continuity of z(¢) is an indispensable condition to be satisfied when
Algorithm is applied. We would mention that the choice of successive
parameter values is important in obtaining the optimal solutions. On
the other hand, this method may converge quite slowly.

Furthermore, it shoud always be remarked that the nonsingularity
of the Jacobian is a standard assumption in many iterative methods
such as the method for solving a system nonlinear equations. In
addition, it is noted that scaling of the variables of the optimization
problems seems to improve the convergence properties of the Algorithm.
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