BRAUER GROUP OVER A KRULL DOMAIN

Heisook Lee

Let R be a Krull domain with field of fractions K. By Br(R) we denote the Brauer group of R. Studying the Kernel of the homomorphism $Br(R) \to Br(K)$, Orzech defined Brauer groups Br(M) for different categories M of R-modules [4].

In this paper we show that an algebra A in Br(D) is a maximal order in $A \otimes K$ and that the map $Br(D) \rightarrow Br(K)$ is one to one.

We note here few conventions. All rings are Krull domains and all modules will be unitary. By Z we do note the set of height one prime ideals of a Krull domain.

0. Preliminaries

We first recall the following definitions and basic properties taken from [4].

- (1) An R-module M is divisorial if it is torsion free and in $K \otimes M$ the equality $M = \bigcap_{P \in Z} M_P$ holds.
- (2) An R-module M is an R-lattice if M is torsion free of finite rank and there exists an R-module F of finite type such that $M \subseteq F$ $\subseteq M \otimes K$.

Let D be the category of divisorial R-lattices. For M and N in D, we view $M \otimes N$ as a subset of $(M \otimes_R K) \otimes_K (N \otimes_R K)$ and define

$$M \perp N = \bigcap_{P \in \mathcal{I}} (M \otimes N)_P$$

Let Az(D) be the set of isomorphism classes of central R-algebras A which are in D as R-modules, and for which the following natural map $\eta_A: A \perp A^0 \to \operatorname{End}_R(A)$ induced by the map $A \otimes A^0 \to \operatorname{End}_R(A)$ is an isomorphism. We note that R-algebra A is in Az(D) if and only if A is a divisorial R-lattice and A_P is an R_P -Azumaya algebra (i. e. A_P is a central separable R_P -algebra) for all P in Z.

Received October 19, 1988.

136 Heisook Lee

We define an equivalence relation \sim on Az(D) by $A \sim B$ if $A \perp End_R(M) \simeq B \perp End_R(N)$

for some M and N in D. Let Br(D) denote the set of equivalence classes of Az(D) and let [A] denote the class of A. Then Br(D) is an abelian group under the operation $[A][B] = [A \perp B]$. The identity element in this group is given by $[End_R(E)]$ for some $E \in D$ and $[A]^{-1} = [A^0]$.

Since every faithfully projective R-module is in D, there is a group homomorphism $\operatorname{Br}(R) \to \operatorname{Br}(D)$. For any R-algebra A and any prime ideal p of R $A \otimes_R K \cong A_P \otimes_{R_p} K$, we have the induced group homomorphism $\operatorname{Br}(D) \to \operatorname{Br}(K)$. In [4] Orzech proved that the kernel of the map $\operatorname{Br}(R) \to \operatorname{Br}(K)$ is exactly the kernel of the map $\operatorname{Br}(R) \to \operatorname{Br}(D)$.

1. Main Theorem

Let R be a regular domain and let R-algebra A be an Azumaya algebra. Then it is well known that A is a maximal R-order in $A \otimes K$ [3]. Similarly the following holds:

Proposition 1. Let R-algebra A be a divisorial R-lattice such that A_P is a central separable R_P -algebra for every $p \in Z$ (i. e. $[A] \in Br(D(R))$). Then A is a maximal R-order in $K \otimes A$.

Proof. Let B be the integral closure of R in A. Since B contains a K-basis of $K \otimes A$ which is in A, B is an R-order in $K \otimes A$. For each $p \in \mathbb{Z}$, A_p is an (maximal) R-order in $K \otimes A_p$ by proposition 6.18 [3] and hence $B_p = A_p$. By proposition 6.11 [3] B^{**} is an R-order in $K \otimes A$. From the following canonical inclusions

$$B \subset B^{**} \subset A$$

and $B_p = A_p$, we have $i_p : B^{**}_p = A_p$. Since B^{**} and A are divisorial (equivalently reflexive) R-modules, $i : B^{**} \to A$ is an isomorphism by Lemma 1.1 [4] and hence A is an R-order in $K \otimes A$. Since A_p is a maximal R-order in $K \otimes A_p$ for each $p \in Z$, by proposition 1.3 [1], A is a maximal R-order in $A \otimes K$.

THEORM 2. The map $Br(D) \rightarrow Br(K)$ is a monomorphism.

Proof. Let [A] be in Br(D) which becomes trivial in Br(K). Then there is a finite dimensional vector space V over K such that $A \otimes K \cong \operatorname{Hom}_K(V, V)$. By Proposition 1, A is a maximal R-order in

the central simple K-algebra $\operatorname{Hom}_K(V,V)$. By Proposition 1.7 [1], $A \simeq \operatorname{End}_R(E)$ for some divisorial R-lattice E. By the definition of $\operatorname{Br}(D)$, $[\operatorname{End}_R(E)] = [A]$ is the identity element in $\operatorname{Br}(D)$ and hence the map is a monomorphism.

Corollary. Br(D) is a torsion group.

References

- 1. R. M. Fossum, Maximal orders over krull domains, J. of Alg. 10, 321-332 (1968).
- 2. R. M. Fossum, The divisor class group of a Krull Domain, Ergebnisse der Mathematik 74, Springer-Verlag, New York, (1973).
- 3. M. Orzech, C. Small, the brauer group of commutative rings, Lectrure Notes in pure and applied mathematics No. 11, Marcel Dekker (1975).
- 4. M. Orzech, Brauer groups and class groups for a krull domain, Lecture Notes in Mathematics No. 917, Springer-Verlag, Berlin, 66-89(1982).

Ewha Womans University Seoul 120-750, Korea