BRAUER GROUP OVER A KRULL DOMAIN

Heisook Lee

Let R be a Krull domain with field of fractions K. By $\text{Br}(R)$ we denote the Brauer group of R. Studying the Kernel of the homomorphism $\text{Br}(R) \to \text{Br}(K)$, Orzech defined Brauer groups $\text{Br}(M)$ for different categories M of R–modules [4].

In this paper we show that an algebra A in $\text{Br}(D)$ is a maximal order in $A \otimes K$ and that the map $\text{Br}(D) \to \text{Br}(K)$ is one to one.

We note here few conventions. All rings are Krull domains and all modules will be unitary. By Z we donote the set of height one prime ideals of a Krull domain.

0. Preliminaries

We first recall the following definitions and basic properties taken from [4].

(1) An R–module M is divisorial if it is torsion free and in $K \otimes M$ the equality $M = \bigcap_{p \in Z} M_p$ holds.

(2) An R–module M is an R–lattice if M is torsion free of finite rank and there exists an R–module F of finite type such that $M \subseteq F \subseteq M \otimes K$.

Let D be the category of divisorial R–lattices. For M and N in D, we view $M \otimes N$ as a subset of $(M \otimes_R K) \otimes_K (N \otimes_R K)$ and define

$$M _N := \bigcap_{p \in Z} (M \otimes N)_p$$

Let $Az(D)$ be the set of isomorphism classes of central R–algebras A which are in D as R–modules, and for which the following natural map $\gamma_A : A _ A^0 \to \text{End}_R(A)$ induced by the map $A \otimes A^0 \to \text{End}_R(A)$ is an isomorphism. We note that R–algebra A is in $Az(D)$ if and only if A is a divisorial R–lattice and A_P is an R_P–Azumaya algebra (i.e. A_P is a central separable R_P–algebra) for all p in Z.

Received October 19, 1988.
We define an equivalence relation \(\sim \) on \(\text{Az}(D) \) by
\[
A \sim B \quad \text{if} \quad A \bot \text{End}_R(M) = B \bot \text{End}_R(N)
\]
for some \(M \) and \(N \) in \(D \). Let \(\text{Br}(D) \) denote the set of equivalence classes of \(\text{Az}(D) \) and let \([A] \) denote the class of \(A \). Then \(\text{Br}(D) \) is an abelian group under the operation \([A][B] = [A \bot B] \). The identity element in this group is given by \([\text{End}_R(E)] \) for some \(E \in D \) and \([A]^{-1} = [A^0] \).

Since every faithfully projective \(R \)-module is in \(D \), there is a group homomorphism \(\text{Br}(R) \to \text{Br}(D) \). For any \(R \)-algebra \(A \) and any prime ideal \(\mathfrak{p} \) of \(R \), \(A \otimes R \mathfrak{p} \cong A_{\mathfrak{p}} \otimes R_{\mathfrak{p}} \mathfrak{p} \), we have the induced group homomorphism \(\text{Br}(D) \to \text{Br}(K) \). In [4] Orzech proved that the kernel of the map \(\text{Br}(R) \to \text{Br}(K) \) is exactly the kernel of the map \(\text{Br}(R) \to \text{Br}(D) \).

1. Main Theorem

Let \(R \) be a regular domain and let \(R \)-algebra \(A \) be an Azumaya algebra. Then it is well known that \(A \) is a maximal \(R \)-order in \(A \otimes K \) [3]. Similarly the following holds:

Proposition 1. Let \(R \)-algebra \(A \) be a divisorial \(R \)-lattice such that \(A_{\mathfrak{p}} \) is a central separable \(R_{\mathfrak{p}} \)-algebra for every \(\mathfrak{p} \in \mathfrak{Z} \) (i.e. \([A] \in \text{Br}(D(R)) \)). Then \(A \) is a maximal \(R \)-order in \(K \otimes A \).

Proof. Let \(B \) be the integral closure of \(R \) in \(A \). Since \(B \) contains a \(K \)-basis of \(K \otimes A \) which is in \(A, B \) is an \(R \)-order in \(K \otimes A \). For each \(\mathfrak{p} \in \mathfrak{Z}, A_{\mathfrak{p}} \) is an (maximal) \(R \)-order in \(K \otimes A_{\mathfrak{p}} \) by proposition 6.18 [3] and hence \(B_{\mathfrak{p}} = A_{\mathfrak{p}} \). By proposition 6.11 [3] \(B^{**} \) is an \(R \)-order in \(K \otimes A \). From the following canonical inclusions
\[
B \subset B^{**} \subset A
\]
and \(B_{\mathfrak{p}} = A_{\mathfrak{p}} \), we have \(i_{\mathfrak{p}} : B^{**} \otimes R_{\mathfrak{p}} = A_{\mathfrak{p}} \). Since \(B^{**} \) and \(A \) are divisorial (equivalently reflexive) \(R \)-modules, \(i : B^{**} \to A \) is an isomorphism by Lemma 1.1 [4] and hence \(A \) is an \(R \)-order in \(K \otimes A \). Since \(A_{\mathfrak{p}} \) is a maximal \(R \)-order in \(K \otimes A_{\mathfrak{p}} \) for each \(\mathfrak{p} \in \mathfrak{Z} \), by proposition 1.3 [1], \(A \) is a maximal \(R \)-order in \(A \otimes K \).

Theorem 2. The map \(\text{Br}(D) \to \text{Br}(K) \) is a monomorphism.

Proof. Let \([A] \) be in \(\text{Br}(D) \) which becomes trivial in \(\text{Br}(K) \). Then there is a finite dimensional vector space \(V \) over \(K \) such that \(A \otimes K \cong \text{Hom}_K(V, V) \). By Proposition 1, \(A \) is a maximal \(R \)-order in
the central simple K-algebra $\text{Hom}_K(V, V)$. By Proposition 1.7 [1], $A \approx \text{End}_R(E)$ for some divisorial R-lattice E. By the definition of $\text{Br}(D)$, $[[\text{End}_R(E)] = [A]$ is the identity element in $\text{Br}(D)$ and hence the map is a monomorphism.

Corollary. $\text{Br}(D)$ is a torsion group.

References

Ewha Womans University
Seoul 120-750, Korea