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BRAUER GROUP OVER A KRULL DOMAIN

Hewsook LEE

Let R be a Krull domain with field of fractions K. By Br(R) we
denote the Brauer group of R. Studying the Kernel of the homomor-
phism Br(R) — Br(K), Orzech defined Brauer groups Br(M) for
different categories M of R-modules [4].

In this paper we show that an algebra A in Br(D) is a maximal
order in AQK and that the map Br(D)—Br(X) is one to one.

We note here few conventions. All rings are Krull domains and all
modules will be unitary. By Z we donote the set of height one prime
ideals of a Krull domain.

0. Preliminaries

We first recall the following definitions and basic properties taken
from [4].

(1) An R-module M is divisorial if it is torsion free and in KQM
the equality M= PQZMP holds,

(2) An R-module M is an R-lattice if M is torsion free of finite
rank and there exists an R-module ¥ of finite :ype such that McF
CM®K.

Let D be the category of divisorial R-lattices. For M and N in D,
we view M®N as a subset of (MR RK)Rx(NKK) and define

M_N=[ (M®N)p

Let Az(D) be the set of isomorphism classes of central R-algebras
A which are in D as R-modules, and for which the following natural
map 74 AL A°— Endgz(A) induced by the map ARA® — Endz(4) is
an isomorphism. We note that R-algebra A is in Az(D) if and only
if A is a divisorial R-lattice and Ap is an Rp—Azumaya algebra (. e.
Ap 1s a central separable Rp-algebra) for all p in Z.
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We define an equivalence relation ~ on Az(D) by
A~B if AlEndg(M)=B_Endy(N)
for some M and N in D. Let Br(D) denote the set of equivalence
classes of Az(D) and let [A] denote the class of A. Then Br(D) is
an abelian group under the operation [A][B]=[A_l B]. The identity
element in this group is given by [Endg(E)] for some E€D and
[A]"1=[A"].

Since every faithfully projective R—module is in D), there is a group
homomorphism Br(R) — Br(D).For any R-algebra A and any prime
ideal p of R ARQRK= Ap®r, K, we have the induced group homomor-
phism Br(D) — Br(K). In [4] Orzech proved that the kernel of the
map Br(R)—Br(K) is exactly the kernel of the map Br(R)— Br(D).

1. Main Theorem

Let R be a regular domain and let R-algebra A be an Azumaya
algebra. Then it is well known that A is a maximal R-order in
A®K [3]. Similarly the following holds:

ProposiTioN 1. Let R-algebra A be a divisorial R-lattice such that Ap
is a central separable Rp—algebra for every p=Z (i.e. LAJ€Br(D(R)).
Then A is a maximal R-order in KQA.

Proof. Let B be the integral closure of R in A. Since B contains a
K-basis of KQA which is in A, B is an R-order in K®A. For each
PEZ, A, is an (maximal) R-order in K&®A, by proposition 6. 18 [3]
and hence B,=A,. By proposition 6.11 [3] B** is an R-order in
K®A. From the following canonical inclusions

Bc B¥*cC A
and B,=A,, we have i,: B¥*,~A, Since B** and A are divisorial
(equivalently reflexive) R-modules, ¢ : B**—A is an isomorphism by
Lemma 1.1 [4] and hence A is an R-order in K®A. Since A, is
a maximal R-order in K®QA, for each peZ, by proposition 1.3 [1],
A is a maximal R-order in ARK.

Tureorm 2. The map Br(D)-->Br(K) is a monomorphism.

Proof. Let [A] be in Br(D) which becomes trivial in Br(X).
Then there is a finite dimensional vector space V over K such that
AR@K=Homg(V, V). By Proposition 1, A is a maximal R-order in
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the central simple K-algebra Homg(V, V). By Proposition 1.7 [1],
A=Endg(E) for some divisorial R-lattice E. By the definition of
Br(D), [Endg(E)]=[A] is the identity element in Br(D) and hence
the map is a monomorphism.

CoroLLARY. Br(D) is a torsion group.
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