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NONLINEAR VARIATIONAL INEQUALITIES
AND FIXED POINT THEOREMS

Semie PArRk anp ILavune K

1. Introduction

P. Hartman and G. Stampacchia [6] proved the following theorem
in 1966: If f: X —> R*is a continuous map on a compact convex
subset X of R* then there exists 20&X such that {frzy, zo—z)>0
for all z&X. This remarkable result has been nvestigated and gene-
ralized by F.E. Browder [1,[2], W. Takahashi [9], S. Park [8]
and others. For example, Browder extended this theorem to a map f
defined on a compact convex subset X of a topological vector space E
into the dual space E* ; see [2, Theorem 2]. And Takahashi extended
Browder’s theorem to closed convex sets in topological vector space;
see [9, Theorem 3].

In Section 2, we obtain some variational inequalities, especially,
generalizations of Browder’s and Takahashi’s thenrems. The generaliza-
tion of Browder’s is an earlier result of the first author [8].

In Section 3, using Theorem 1, we improve and extend some known
fixed point theorems. Theorems 4 and 8 improve Takahashi’s results
19, Theorems 5 and 9], respectively. Theorem 4 extends the first
author’s fixed point theorem [8, Theorem 8] (Theorem 5 in this
paper) which is a generalization of Browder [1, Theroem 1]. Theorem8
extends Theorem 9 which is a generalization of Browder [2, Theorem 3].

Finally, in Section 4, we obtain variational inequalities for multi~
valued maps by using Theorem 1. We improve Takahashi’s results
[9, Theorems 21 and 22] which are generalizations of Browder [2,
Theorem 6] and the Kakutani fixed point theorem [77, respectively.
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2. Variational inequalities

Throughout this paper, we assume that a topological space is Haus-
dorff and a topological vector space is real. Let us start with the
following useful theorem. We deduce this from the Brouwer fixed
point theorem.

Turorem 1. Let X be a nonempty compact convex subset of a topological
vector space E and f a real valued function on XXX satisfying:

(1) For each y&X, the function f(z,y) of x is lower semicontinuous:
(i1) for each z X, the function f(z,9) of v is quasi-concave: and
(iii) f(z,2) <c for all z€X with some real number c.

Then there exists an zo& X such that flzo, ¥) <c for all yeX.

Proof. Suppose that for each z&X, there exists y&€X such that
f(z,y)>c. Then for each y&X, the set Uy={z=X: f(z, y) >c} is
open by (i), and {U,},.x is a cover of X. Since X is compact, there
exists a finite family {yy, ys, ..., y,] such that {U,}, covers X. Let
{81, Bz, ..., B,} be a partition of unity subordinated to this subcover.
Then each 8; is a continuous map of X into [0,1] which vanishes
outside U,, while i;ﬂ,-(x) =1 for all z&X. For each i satisfying §;(z)

#0, z lies in U,, so that f(z,y,) ™. By (ii) we have

Fla, BB y) e
for all z&X. Define a continuous map p of X into the convex hull of
{31, ¥2, o0y 34} by

?(x) :;g‘ Bi(z) v,
Since the convex hull of {y, 3, ..., 3,} is a compact convex subset of
X which lies in a finite dimensional subspace of E, by the Brouwer

fixed point theorem, we have z,& X such that x1=p(xl)=Z_}lﬁi(x1)y;.
Hence we have

CEf(xly xl) :f(xh f:.l ﬁi(xl)yi> >c,
which is a contradiction.

Theorem 1 improves Takahashi [9, Lemma 1]. From Theorem 1,
we obtain the following due to Fan [5] by setting g(z, ¥) = f (z, z)
—f(z,y) on XXX.
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CoroLLARY 1. Let X be a nonempty compact convex subset of a topolo-
gical vector space E and f a real valued continuous Sunction on X XX
such that for each x&X, the function f(x,y) of vy is quasi—-conver.
Then there exists x0&X such that f(zq, 2¢) < (20, ¥) for all ye X,

Let X be a convex subset of a vector space E over R. For each
z&X, the inward and outward sets of X at x, Iy(z) and Ox (z),
are defined as follows:

Iy(z):={z+r(u—z)EE : uc X, r>0},
Ox(2):={z—r(u—2)EE : uc X. r>0).

If E is a topological vector space, the closures of Iy(z) and Ox (1)
are denoted by Ix(z) and Ox(z), respectively. In the sequel, W(x)
denotes either Tx(x) or Ox(z).

In [8], the first author obtained the following result by using
Corollary 1.

CoroLLarY 2. [8] Let X be a nonempty compact conver subset of a
topological vector space E and f a real valued continuous function on X X E
such that for each x&X, the function f(x,%) of vy is conver. Then
there cxists an 20€X such that f(zo, 10) < f (20, ) for all y&Ix(z,).

By using this, the first author proved the foliowing:

TueoreM 2. [8] Let X be a nonempty compact convexr subset of a
topological vector space E and f a continuous map of X into E*. Then
there exists an xyE X such that {fzxo, x9—3) >0 jor all y= W (x,).

In particular, if E is locally convex and W(ry) is replaced by X,
then Theorem 2 reduces to Browder [2, Theorem 2]. In [9, Theorem
31, Takahashi generalized Browder [2, Theorer 2] to closed convex
sets in topological vector spaces. In the following theorem, we improve
Takahashi’s result. Let H, X be nonempty subsets of a topological
vector space E. We put By X=X H—-X and I,X=X (ByX)© where
A is the closure of ACE and A¢ is the complement of A.

TueoreM 3. Let 11 be a closed convex subset of a topological vector

space E and f a continuous map of H into E*. If there exists a compact
convex subset X of H such that IyX+d and for each 2 ByX, there is
ugG Iy X with {fz, z—uyy >0, then there exists z*<H such that
¥, y—2%) 20 for all yeTIy(a™).
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Proof. By Theorem 2, there exists 2*& X such that {fz*, y—z*)>0
for all yelIy(«*). If 2*I,X, for each y=H, we can choose
A0 < A1<1) so that x=z*+A(y—z*) lies in X since the map p(1) =
r¥4-2(y—2*) is continuous. Then y=a*+ (z—2%)/A lies in Iyx(z*).
Hence we obtain {fz*, y—2*> >0 for all yeH. If 2*=ByzX, by the
hypothesis, there exists w,&lpX with {(fz*, x*¥—uy»>0. Since
(fa*, z—2*>>0 for all z&€ X, it follows that

{fx*, x—ugy >0
for all z& X. Since wy<=IyX, for each y& H there exists A (0<{A<1)
such that z=uy+A(y—u,) €X. Hence
0= fa*, x—ugy=A{fz*, y—up)

and consequently {fz*, y—uyy >0 for all v&H. Since wy=X implies
(fx*, ug—ax*y >0, we obtain {fz* y—2*»>0 for all yeH. For y&
Ig(\H, y=z*+r(u—z*) for some ucH, r>1. So {(fz*, y—z*)
=r{fz*, u—z*>>0. Hence (fz*, y—2*)>0 for all y=Iy(z*).

3. Fixed point theorems

In this section, using Theorem 1, we improve and extend some
known fixed point theorems.

TueoreM 4. Let X be a nonempty compact convex subset of a topologi-
cal vector space FE and f a continuous map of X into E. Then, either
there exists yo©& X such that vy and fyy cannot be separated by a con-
tinuous linear functional, or there exist xo©X and g E* such that

glzo—fz0)< 0 = inf g(zo—2).

Proof. Suppose that for each z&X, there exists A€ E* such that
hlx— fx)<C0. Setting Up={zeX : h(x—fz)< 0} for each A E* we
have a cover {Uu}per* of X. Since X is compact, there exists a finite
family {A1, 4, ..., h,) such that {U,}>, covers X. Let {8;, B2 ..., Ba}
be a partition of unity subordinated to this subcover. Define a real
valued function p on X XE by

P2, 2) =3 BV hilz—).
Then, by Corollary 2, there exists zo&X such that
P (20, %) :'Zill Bi (o) hi{xo—y) = p (20, o) =0
for all y&Ix(xy). On the other hand, we have
p(zo, fzo) = f‘j Bi(zo) hi (20— f20) <O
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By putting g:}i} Bi(zo) ki, we obtain the desired result for inward
case. o

For outward case, define a continuous map f': X—E by f/lr=2x—fz.
Then, by the preceding inward case, either there exists yo=X such
that y, and f’y, cannot be separated by a continuous linear functional,
or there exist zp&X and ¢ =E* such that g (zyg—Fflzy) <0 <
inf g’ (zg—=z). The first alternative implies that v, and fy, cannot be

FEYER)
separated by a continuous linear functional. Suppose that the second
one holds. For any ye&Oy(zy), x=2z¢—y lies in Iy(zy). Then we
have

(—&") (2o~ f0) = (—¢") (f' 2o~20) =g’ (20— f"74) <0

g (ro—2) =g’ (y—z0) = (—g’) (zo—y)

for any y= Oy (z,), and hence for any y€Oyx(zo,. By putting g=—g’,
we obtain the desired result for outward case.

Theorem 4 improves Takahashi [9, Theorem 5]. As a consequence
of Theorem 4, we have the following:

Turorem 5. [8] Let X be a nonempty compact convex subset of a
topological vector space E having sufficiently many linear functionals and
[ a continuous map of X into E. If for each xe&X, there exists A<1
with Ax+- (1—2A) fr& W(a), then f kas a fized point.

Proof. Suppose f has no fixed point. By Theorem 4 there exist
zy€X and g€E* such that

glao—fre)< 0 < inf g(‘r(,f -y).

ye Wiz,
For this z;, we can choose 171 with Yoi=Aag+ (1—2) fro& W{zg).
Hence we have
g(xo‘fx())“\io‘ig(f()*yo):(1”‘2)g<fo‘“f~’fo)~
This is a contradiction. Therefore f has a fixed point.

In particular, if E is locally convex and W(z) is replaced by X,
then Theorem 5 reduces to Browder [1, Theorem 1]. On the other
hand, if  maps X into itself, we obtain the following:

CoroLLarY 3. 3] Let X be a nonempty compact convex subset of a
topological vector space E having sufficiently many linear functionals and
[ a continuous map of X into itself. Then [ has a fixed point.

As another consequence of Theorem 4, we have the following:
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TreoREM 6. Let H be a closed conver subset of a topological vector
space E having sufficiently many linear functionals and f a continuous
map of H into H. If there exists a compact convex subset X of H such
that for each xEByX, there is 2<1 with Az+ (1-A) fzcIx(z), then
f has a fixed point in H.

Proof. Consider the restriction of f to X. If £ has no fixed point
in X, by Theorem 4 there exist o€ X and g< E* such that

g(zo—fxg) <0 gngcfz g (xo—y).

If zpelyX, since fro&H, we can choose 1 (0<{A<'1) so that Yo=AZg
+ (1—2) fx, lies in X. Hence we have

g(xo— fzo) <0=g(zg—yy) = (1‘*2)8'(10"1%0)-
This is a contradiction. If zo&ByzX, by the hypothesis, there exists
A<1 with yy=2z¢+ (1—2) fro€Ix(z;). Also we have

g(zo—fz0) <0< g (20—150) = (1— ) g (zo— fz0),
which is a contradiction. Therefore f has a fixed point.

In particular, if E is locally convex and W(z):=Tx(z) is replaced
by X, then Theorem 6 reduces to Takahashi [9, Theorem 7].

We now generalize Theorem 4 to multi-valued maps. The following
definition is due to Fan [47]. Let X be a subset of a topological vector
space E. A map T of X into 2£ is said to be upper demicontinuous
if for each open half-space /7 in E, the set {z&X : Txc—H} is open
in X. An open half-space Hin E is a set of the form {z€E : hz>r)
where % is a continuous linear functional, not identically zero, and r
is a real number. It is obvious that if a map T of X into 2F is upper
semicontinuous, then 7" is upper demicontinuous. We say that two
sets A, B in E can be strictly separated by a closed hyperplane, if
there exist A€ E* and r&R such that hz< r for all z€ A and hy>r
for all y&B. For two sets C, D in R, C<_DD means that <y for any
zeC and ye D.

Tueorem 7. Let X be a nonempty compact convex subset of a topologi-
cal vector space E. Let S, T be two upper demicontinuous maps of X
into 28 such that for each zSX, Sz and Tz arc nonempty. T hen,
either there exists yo&X for which Sy, and Ty, cannot be strictly
separated by a closed hyperplane, or there exist zoc X and g E* such
that g(zo— Txy) <g(xg—Szy) and 0 g}é’lvg(Ig;(xo*y),
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Proof. Suppose that for each z&X, Sz and Tz can be strictly
separated by a closed hyperplane. Then for each z€ X, we can find
g:€E* and r.€R such that g:(82)<r,< g,(Tz). Since S, T are
upper demicontinuous on X, there exists a neighborhood U, of z in
X such that g,(Sy)<r,< g, (Ty) for all y€U, Hence z is in the
interior N(g,) of {z&X: £:(S2)< g, (Tz)}. Thus X=U N(g,). By

zeX
compactness of X, there exists a finite set {z,, x,, vory 2,) ©X such that
X = U N(g;;). Let {8}, be a partition of unity subordinated to the
i=1

cover {N(g.,)}. Define a real valued function p on XcE by

#(z, ) =Zpi(2) gz, (z—3).
By Corollary 2, there exists zo€ X such that

?(zo, ¥) :é Bi(20) g2;(xo—y) = p (0. 79) =0

for all y&Ty(xz;). We also know that
é Bi(x) g2, (Szo) < "5;1‘1 B:(20) g2 (To).

By putting ¢ = X 8:(20)g,,, we obtain the desired result for inward
case.

For outward case, define upper demicontinuous maps S', T : X —
28 by §'z=2z—S8z, T'r=2z—Tx, respectively. By the preceding
inward case, either there exists yo& X for which S’yo and T”yy cannot
be strictly separated by a closed hyperplane, or there exist o€ X and
g €E* such that g/ (xo—T"29) < g’ (xg—5"2y) and 0 < inf g (x2g—2).

TEWizy
The first alternative implies that Sy, and Ty, cannot be strictly
separated by a closed hyperplane. Suppose that the second one holds,
For any y&Ox(x9), 2=2zy—y lies in Ix(z,). Then we have
(—&) (20— Tzp) = (—¢') (T' 29— 20) = g’ (29— T" x)

L8 (29— 8" 20) = (—¢") (8 2p—20) = (—¢") (20— Sz),
and

0=g’ (z0—2) =g (y—zp) =(—g') (z9—2)
for any y&Ox(z9), and hence for any y& Oy (2. By putting g=—g/,
we obtain the desired result for outward case.

Theorem 7 improves Takahashi [9, Theorem 8. If § is the
identity map of X, then Theorem 7 reduces to the following generali-
zation of Theorem 4.
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TueoreMm 8. Let X be a nonempty compact convex subset of a topological
vector space E and T an upper demicontinuous map of X into 2F such
that for each x© X, Tx is nonempty. Then, either there exists y,&X
such that yy and Ty, cannot be strictly separated by a closed hyperplane,
or there exist 10X and g& E* such that

g(zg—Tx))-0 lgf g(zg—).

Theorem 8§ improves Takahashi [9, Theorem 9]. As a consequence
of Theorem 8, we have the following theorem.

Tueorem 9. Let X be a nonempty compact convex subset of a locally
convexr topological vector space E and T an upper demicontinuous map X
into 28 such that for each x=X, Tx is nonempty, closed and convez.
If for each =X, there exists A< 1 such that (Az+(1—)Tz)N
W(z)#¢, then T has a fized point.

Proof. Suppose T has no fixed point. By Theorem 8 there exist
o X and g=E* such that
g(zo—Tzo) <0 = inf glae—y).

ye Wiz
For this 2y, we can choose A<1 and z, & Tz, such that yo:=Az+
(1—A)zo€ W(xy). Hence we have
g(xg—29)< 0= g(axo—y0) = (1— D g(xo—20).
This is a contradiction. Therefore 7 has a fixed point.

In particular, if 7 is upper semicontinuous and W{(z) is replaced
by X, then Theorem 9 reduces to Browder [2, Theorem 3].

From Corollary 2 for a normed vector space, we obtain the following
generalization of Ky Fan [4, Theorem 2].

Tueorem 10. Let X be a nonempty compact conver subset of a normed
vector space E and f a continuous map of X into E. Then there exists
0 EX such that

s Wir )

| fag—zoll = {nén | fro—wll.

Proof. Define a real valued function g on X X E by g(z, v) = fz—xl.
Then g is continuous and for each re2 X, the function g(z,y) of v is
convex. Thus the desired result is obvious by Corollary 2.

4. Variational inequalities for multi-valued maps

By using Theorem 1, we generalize Theorem 2 to multi-valued
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maps for inward case.

TuroreM 11. Let X be a nonempty compact convex subset of a topologi-
cal vector space E and T an upper semicontinuous map of X into 2F
such that for each z&X, Tx is nonempty and compact. If for each
reX,

min max {g, x—3y)= max mln {g, z—9,
yeX geT =

then there exist o= X and g20E T’l‘o such tlzat Grgy kg—yy = 0 for all
yE Iy ().

Proof. Define a real valued function f on X>X by
f(z, y)=max (g, z—y).
geTr

For any y€X and c&R, put A={z€X : f(z,5) >¢}. We show that
if {z,:a&} is a net in A converging to z, then z,=A. For each
z, there exists g,& Tz, such that (g, z,—»>>¢. Since U{Tz : reX}
is compact, {g,} has a subnet {g,} converging to gy. Since T is upper
semicontinuous, go& Txo. Also we have ¢ < lim{g,, z.—3> = (go,

—y). Hence g€ A. That is, the function f(a,») of z is upper semi-
continuous. It is obvious that the function f(z,y) of v is convex and
flz,2)=0 for all z&X. By Theorem 1 for — £, there exists zo&X
such that max {g, z¢—y) >0 for all v&X. Since

geTr,

min max {g, zo—y) =max m1n<g,10 ¥,

yeX geT: geTzy ve

we have g, Tz, such that {(go, zo—»> =0 for all y&X. For ye
Ix(2o)\X, y=z¢+r(u—zg) for some u€X and r>1. So (g, To—yy =
r{go, To—u) =0. Hence {gy, 29— 3> =0 for all ye Iy (xy).

Theorem 11 improves Takahashi [9, Theorem 21]. In particular, if
Tz is convex, the minimax equality in Theorem 11 holds. So we have
the following corollary which is an extension of Browder [2, Theorem

6].

CoroLLARY 4. Let X be a nonempty compact convex subset of a topologi-
cal vector space Eand T an upper semicontinuous map of X into 28 such
that for each <X, Tx is nonempty, compact and convexr. Then there
exist 20X and go€ Txg such that {go, zo—y) >0 for all y&Ix(z,).

Proof. We need only show that for each z€ X,

min max (g, r—yy)=max min {g, z —y).
yeX geTz geTr ye X
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Let z&€X and c¢=max min {g, z—y)>. For each g&€Tz, put A(g)=

geTz yeX

{(y€X: (g, z—y)<c}. Let {g1, g3, ..., g:) be a finite subset of Tz and

{ri, 72, ..., 7,} be nonnegative numbers with Z} ri=1. For _Z]r,-g,-e T,

there is yp& X such that Z Lghn T —y> = <Z rigi 230y <e. Thus there

exists z& X such that (g,, —2y<¢ for 1—1 2, ..., n. Since the family
{A(g) : g=Txz} has the finite intersection propert} and X is compact,
we have N {A(g) :g€Tz}#¢. Let y=n {A(g) : g&€Tz}. Then
max {g, t--yy> <¢. Hence we have

f m1n max(g, z— y><max<g, r-— y0><max rnln g, T— ).

On the other hand it is obv10us that
max min{g, r—y) <min max{g, z — y).
g y ¥ g

Tueorem 12. Let X be a nonempty compact convex subset of Euclidean
space R* and T an upper semicontinuous map of X into 2% such that for
each x&X, Tz is nonempty and compact. If for each z€ X,

min max {z—z, z—y)=max min{z—z, —y),
yeX zeTr zeTr yeX

then there exist £0€X and z2o& Txy such that (zg—z,, zo—y> >0 for all
YEIx(zy).

Proof. Setting f(zx,y)=max {(z—z,2z—y) for z,y€X and applying
zeTz
the argument in Theorem 11, we obtain the desired result.

Theorem 12 improves Takahashi [9, Theorem 22]

CoroLLARY 5. Let X be a nonempty compact convex subset of Euclidean
space R* and T an upper semicontinuous map of X into 28 such that for
each x&X, Tx is nonempty, compact and convexr. Then there exist
7€ X and 2 S Txy such that {zo—xzo, 19—y) >0 for all y&Iy(ay,).

Proof. We need only show that for each z&X,

min max {z—z,z—y)=max min {(z—z, r—y).
yeX zeTz zeTx yeX

This follows from the argument in Corollary 4.

In Theorem 12,if T is a map of X into 2%, by putting y=zg, we
obtain zy=u=z,, that is, z¢&Tzo In particular, the Kakutani fixed
point theorem is obtained.
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CoroLLArY 6. [7] Let X be a nonempty compact convexr subset of
Eulidean space R* and T an upper semicontinuous map of X into 2%
such that for each x&X, Tx is nonempty, compact and conver. Then
T has a fired point.
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