NONLINEAR VARIATIONAL INEQUALITIES AND FIXED POINT THEOREMS

SEHIE PARK AND ILHYUNG KIM

1. Introduction

P. Hartman and G. Stampacchia [6] proved the following theorem in 1966: If $f: X \to R^n$ is a continuous map on a compact convex subset X of R^n , then there exists $x_0 \in X$ such that $\langle fx_0, x_0 - x \rangle \geq 0$ for all $x \in X$. This remarkable result has been investigated and generalized by F. E. Browder [1], [2], W. Takahashi [9], S. Park [8] and others. For example, Browder extended this theorem to a map f defined on a compact convex subset X of a topological vector space E into the dual space E^* ; see [2, Theorem 2]. And Takahashi extended Browder's theorem to closed convex sets in topological vector space; see [9, Theorem 3].

In Section 2, we obtain some variational inequalities, especially, generalizations of Browder's and Takahashi's theorems. The generalization of Browder's is an earlier result of the first author [8].

In Section 3, using Theorem 1, we improve and extend some known fixed point theorems. Theorems 4 and 8 improve Takahashi's results [9, Theorems 5 and 9], respectively. Theorem 4 extends the first author's fixed point theorem [8, Theorem 8] (Theorem 5 in this paper) which is a generalization of Browder [1, Theorem 1]. Theorem 8 extends Theorem 9 which is a generalization of Browder [2, Theorem 3].

Finally, in Section 4, we obtain variational inequalities for multi-valued maps by using Theorem 1. We improve Takahashi's results [9, Theorems 21 and 22] which are generalizations of Browder [2, Theorem 6] and the Kakutani fixed point theorem [7], respectively.

Received October 26, 1988.

Supported by a grant from the Korea Science and Engineering Foundation, 1987-88.

2. Variational inequalities

Throughout this paper, we assume that a topological space is Hausdorff and a topological vector space is real. Let us start with the following useful theorem. We deduce this from the Brouwer fixed point theorem.

Theorem 1. Let X be a nonempty compact convex subset of a topological vector space E and f a real valued function on $X \times X$ satisfying:

- (i) For each $y \in X$, the function f(x, y) of x is lower semicontinuous;
- (ii) for each $x \in X$, the function f(x, y) of y is quasi-concave; and
- (iii) $f(x, x) \le c$ for all $x \in X$ with some real number c.

Then there exists an $x_0 \in X$ such that $f(x_0, y) \le c$ for all $y \in X$.

Proof. Suppose that for each $x \in X$, there exists $y \in X$ such that f(x, y) > c. Then for each $y \in X$, the set $U_y = \{x \in X : f(x, y) > c\}$ is open by (i), and $\{U_y\}_{y \in X}$ is a cover of X. Since X is compact, there exists a finite family $\{y_1, y_2, ..., y_n\}$ such that $\{U_{y_i}\}_{i=1}^n$ covers X. Let $\{\beta_1, \beta_2, ..., \beta_n\}$ be a partition of unity subordinated to this subcover. Then each β_i is a continuous map of X into [0, 1] which vanishes outside U_{y_i} , while $\sum_{i=1}^n \beta_i(x) = 1$ for all $x \in X$. For each i satisfying $\beta_i(x) \neq 0$, x lies in U_{y_i} , so that $f(x, y_i) > c$. By (ii) we have

$$f(x, \sum_{i=1}^{n} \beta_i(x) y_i) > c$$

for all $x \in X$. Define a continuous map p of X into the convex hull of $\{y_1, y_2, ..., y_n\}$ by

$$p(x) = \sum_{i=1}^{n} \beta_i(x) y_i.$$

Since the convex hull of $\{y_1, y_2, ..., y_n\}$ is a compact convex subset of X which lies in a finite dimensional subspace of E, by the Brouwer fixed point theorem, we have $x_1 \in X$ such that $x_1 = p(x_1) = \sum_{i=1}^{n} \beta_i(x_1) y_i$. Hence we have

$$c \ge f(x_1, x_1) = f(x_1, \sum_{i=1}^{n} \beta_i(x_1) y_i) > c,$$

which is a contradiction.

Theorem 1 improves Takahashi [9, Lemma 1]. From Theorem 1, we obtain the following due to Fan [5] by setting g(x, y) = f(x, x) - f(x, y) on $X \times X$.

Corollary 1. Let X be a nonempty compact convex subset of a topological vector space E and f a real valued continuous function on $X \times X$ such that for each $x \in X$, the function f(x, y) of y is quasi-convex. Then there exists $x_0 \in X$ such that $f(x_0, x_0) \leq f(x_0, y)$ for all $y \in X$.

Let X be a convex subset of a vector space E over R. For each $x \in X$, the inward and outward sets of X at x, $I_X(x)$ and $O_X(x)$, are defined as follows:

$$I_X(x) := \{x + r(u - x) \in E : u \in X, r > 0\},\$$

$$O_X(x) := \{x - r(u - x) \in E : u \in X, r > 0\}.$$

If E is a topological vector space, the closures of $I_X(x)$ and $O_X(x)$ are denoted by $\overline{I}_X(x)$ and $\overline{O}_X(x)$, respectively. In the sequel, W(x) denotes either $\overline{I}_X(x)$ or $\overline{O}_X(x)$.

In [8], the first author obtained the following result by using Corollary 1.

COROLLARY 2. [8] Let X be a nonempty compact convex subset of a topological vector space E and f a real valued continuous function on $X \times E$ such that for each $x \in X$, the function f(x, y) of y is convex. Then there exists an $x_0 \in X$ such that $f(x_0, x_0) \leq f(x_0, y)$ for all $y \in \overline{I}_X(x_0)$.

By using this, the first author proved the following:

THEOREM 2. [8] Let X be a nonempty compact convex subset of a topological vector space E and f a continuous map of X into E*. Then there exists an $x_0 \in X$ such that $\langle fx_0, x_0 - y \rangle \geq 0$ for all $y \in W(x_0)$.

In particular, if E is locally convex and $W(x_0)$ is replaced by X, then Theorem 2 reduces to Browder [2, Theorem 2]. In [9, Theorem 3], Takahashi generalized Browder [2, Theorem 2] to closed convex sets in topological vector spaces. In the following theorem, we improve Takahashi's result. Let H, X be nonempty subsets of a topological vector space E. We put $B_H X = \overline{X} \cap \overline{H - X}$ and $I_H X = X \cap (B_H X)^c$ where \overline{A} is the closure of $A \subset E$ and A^c is the complement of A.

Theorem 3. Let II be a closed convex subset of a topological vector space E and f a continuous map of H into E^* . If there exists a compact convex subset X of H such that $I_HX \neq \phi$ and for each $z \in B_HX$, there is $u_0 \in I_HX$ with $\langle fz, z-u_0 \rangle \geq 0$, then there exists $x^* \in H$ such that $\langle fx^*, y-x^* \rangle \geq 0$ for all $y \in \overline{I}_H(x^*)$.

Proof. By Theorem 2, there exists $x^* \in X$ such that $\langle fx^*, y-x^* \rangle \geq 0$ for all $y \in I_X(x^*)$. If $x^* \in I_H X$, for each $y \in H$, we can choose λ $(0 < \lambda < 1)$ so that $x = x^* + \lambda (y - x^*)$ lies in X since the map $p(\lambda) = x^* + \lambda (y - x^*)$ is continuous. Then $y = x^* + (x - x^*)/\lambda$ lies in $I_X(x^*)$. Hence we obtain $\langle fx^*, y - x^* \rangle \geq 0$ for all $y \in H$. If $x^* \in B_H X$, by the hypothesis, there exists $u_0 \in I_H X$ with $\langle fx^*, x^* - u_0 \rangle \geq 0$. Since $\langle fx^*, x - x^* \rangle \geq 0$ for all $x \in X$, it follows that

$$\langle fx^*, x-u_0\rangle \ge 0$$

for all $x \in X$. Since $u_0 \in I_H X$, for each $y \in H$ there exists λ (0 $<\lambda<1$) such that $x = u_0 + \lambda(y - u_0) \in X$. Hence

$$0 \le \langle fx^*, x-u_0 \rangle = \lambda \langle fx^*, y-u_0 \rangle$$

and consequently $\langle fx^*, y-u_0 \rangle \geq 0$ for all $y \in H$. Since $u_0 \in X$ implies $\langle fx^*, u_0-x^* \rangle \geq 0$, we obtain $\langle fx^*, y-x^* \rangle \geq 0$ for all $y \in H$. For $y \in I_H(x^*) \setminus H$, $y=x^*+r(u-x^*)$ for some $u \in H$, r>1. So $\langle fx^*, y-x^* \rangle = r\langle fx^*, u-x^* \rangle \geq 0$. Hence $\langle fx^*, y-x^* \rangle \geq 0$ for all $y \in \overline{I}_H(x^*)$.

3. Fixed point theorems

In this section, using Theorem 1, we improve and extend some known fixed point theorems.

Theorem 4. Let X be a nonempty compact convex subset of a topological vector space E and f a continuous map of X into E. Then, either there exists $y_0 \in X$ such that y_0 and fy_0 cannot be separated by a continuous linear functional, or there exist $x_0 \in X$ and $g \in E^*$ such that

$$g(x_0-fx_0) < 0 \le \inf_{y \in W(x_0)} g(x_0-y).$$

Proof. Suppose that for each $x \in X$, there exists $h \in E^*$ such that h(x-fx) < 0. Setting $U_h = \{x \in X : h(x-fx) < 0\}$ for each $h \in E^*$, we have a cover $\{U_h\}_{h \in E^*}$ of X. Since X is compact, there exists a finite family $\{h_1, h_2, ..., h_n\}$ such that $\{U_{h_i}\}_{i=1}^n$ covers X. Let $\{\beta_1, \beta_2, ..., \beta_n\}$ be a partition of unity subordinated to this subcover. Define a real valued function p on $X \times E$ by

$$p(x, y) = \sum_{i=1}^{n} \beta_i(x) h_i(x-y).$$

Then, by Corollary 2, there exists $x_0 \in X$ such that

$$p(x_0, y) = \sum_{i=1}^{n} \beta_i(x_0) h_i(x_0 - y) \ge p(x_0, x_0) = 0$$

for all $y \in \overline{I}_X(x_0)$. On the other hand, we have

$$p(x_0, fx_0) = \sum_{i=1}^{n} \beta_i(x_0) h_i(x_0 - fx_0) < 0.$$

By putting $g = \sum_{i=1}^{n} \beta_i(x_0) h_i$, we obtain the desired result for inward case.

For outward case, define a continuous map $f': X \to E$ by f'x = 2x - fx. Then, by the preceding inward case, either there exists $y_0 \in X$ such that y_0 and $f'y_0$ cannot be separated by a continuous linear functional, or there exist $x_0 \in X$ and $g' \in E^*$ such that $g'(x_0 - f'x_0) < 0 \le \inf_{z \in I_X(x_0)} g'(x_0 - z)$. The first alternative implies that y_0 and fy_0 cannot be separated by a continuous linear functional. Suppose that the second one holds. For any $y \in O_X(x_0)$, $z = 2x_0 - y$ lies in $I_X(x_0)$. Then we have

$$(-g')(x_0-fx_0) = (-g')(f'x_0-x_0) = g'(x_0-f'x_0) < 0$$

$$\leq g'(x_0-z) = g'(y-x_0) = (-g')(x_0-y)$$

for any $y \in O_X(x_0)$, and hence for any $y \in \overline{O}_X(x_0)$. By putting g = -g', we obtain the desired result for outward case.

Theorem 4 improves Takahashi [9, Theorem 5]. As a consequence of Theorem 4, we have the following:

Theorem 5. [8] Let X be a nonempty compact convex subset of a topological vector space E having sufficiently many linear functionals and f a continuous map of X into E. If for each $x \in X$, there exists $\lambda < 1$ with $\lambda x + (1-\lambda)fx \in W(x)$, then f has a fixed point.

Proof. Suppose f has no fixed point. By Theorem 4 there exist $x_0 \in X$ and $g \in E^*$ such that

$$g(x_0-fx_0)<0 \le \inf_{y\in W(x_0)}g(x_0-y).$$

For this x_0 , we can choose $\lambda < 1$ with $y_0 := \lambda x_0 + (1 - \lambda) f x_0 \in W(x_0)$. Hence we have

$$g(x_0-fx_0)<0\leq g(x_0-y_0)=(1-\lambda)g(x_0-fx_0).$$

This is a contradiction. Therefore f has a fixed point.

In particular, if E is locally convex and W(x) is replaced by X, then Theorem 5 reduces to Browder [1, Theorem 1]. On the other hand, if f maps X into itself, we obtain the following:

Corollary 3. [3] Let X be a nonempty compact convex subset of a topological vector space E having sufficiently many linear functionals and f a continuous map of X into itself. Then f has a fixed point.

As another consequence of Theorem 4, we have the following:

THEOREM 6. Let H be a closed convex subset of a topological vector space E having sufficiently many linear functionals and f a continuous map of H into H. If there exists a compact convex subset X of H such that for each $x \in B_H X$, there is $\lambda < 1$ with $\lambda x + (1 - \lambda) f x \in \overline{I}_X(x)$, then f has a fixed point in H.

Proof. Consider the restriction of f to X. If f has no fixed point in X, by Theorem 4 there exist $x_0 \in X$ and $g \in E^*$ such that

$$g(x_0-fx_0) < 0 \le \inf_{y \in W(x_0)} g(x_0-y).$$

If $x_0 \in I_H X$, since $fx_0 \in H$, we can choose λ (0 $<\lambda<$ 1) so that $y_0 = \lambda x_0 + (1-\lambda)fx_0$ lies in X. Hence we have

$$g(x_0-fx_0)<0\leq g(x_0-y_0)=(1-\lambda)g(x_0-fx_0).$$

This is a contradiction. If $x_0 \in B_H X$, by the hypothesis, there exists $\lambda < 1$ with $y_0 = \lambda x_0 + (1 - \lambda) f x_0 \in \overline{I}_X(x_0)$. Also we have

$$g(x_0-fx_0)<0\leq g(x_0-y_0)=(1-\lambda)g(x_0-fx_0),$$

which is a contradiction. Therefore f has a fixed point.

In particular, if E is locally convex and $W(x) := \overline{I}_X(x)$ is replaced by X, then Theorem 6 reduces to Takahashi [9, Theorem 7].

We now generalize Theorem 4 to multi-valued maps. The following definition is due to Fan [4]. Let X be a subset of a topological vector space E. A map T of X into 2^E is said to be upper demicontinuous if for each open half-space H in E, the set $\{x \in X : Tx \subset H\}$ is open in X. An open half-space H in E is a set of the form $\{x \in E : hx > r\}$ where h is a continuous linear functional, not identically zero, and r is a real number. It is obvious that if a map T of X into 2^E is upper semicontinuous, then T is upper demicontinuous. We say that two sets A, B in E can be strictly separated by a closed hyperplane, if there exist $h \in E^*$ and $r \in R$ such that hx < r for all $x \in A$ and hy > r for all $y \in B$. For two sets C, D in R, C < D means that x < y for any $x \in C$ and $y \in D$.

Theorem 7. Let X be a nonempty compact convex subset of a topological vector space E. Let S, T be two upper demicontinuous maps of X into 2^E such that for each $x \in X$, Sx and Tx are nonempty. Then, either there exists $y_0 \in X$ for which Sy_0 and Ty_0 cannot be strictly separated by a closed hyperplane, or there exist $x_0 \in X$ and $g \in E^*$ such that $g(x_0 - Tx_0) < g(x_0 - Sx_0)$ and $0 \le \inf_{y \in W(x_0)} g(x_0 - y)$.

Proof. Suppose that for each $x \in X$, Sx and Tx can be strictly separated by a closed hyperplane. Then for each $x \in X$, we can find $g_x \in E^*$ and $r_x \in R$ such that $g_x(Sx) < r_x < g_x(Tx)$. Since S, T are upper demicontinuous on X, there exists a neighborhood U_x of x in X such that $g_x(Sy) < r_x < g_x(Ty)$ for all $y \in U_x$. Hence x is in the interior $N(g_x)$ of $\{z \in X : g_x(Sz) < g_x(Tz)\}$. Thus $X = \bigcup_{x \in X} N(g_x)$. By compactness of X, there exists a finite set $\{x_1, x_2, ..., x_n\} \subset X$ such that $X = \bigcup_{i=1}^n N(g_{x_i})$. Let $\{\beta_i\}_{i=1}^n$ be a partition of unity subordinated to the cover $\{N(g_{x_i})\}$. Define a real valued function p on $X \in E$ by

$$p(x, y) = \sum_{i=1}^{n} \beta_i(x) g_{x_i}(x-y).$$

By Corollary 2, there exists $x_0 \in X$ such that

$$p(x_0, y) = \sum_{i=1}^{n} \beta_i(x_0) g_{x_i}(x_0 - y) \ge p(x_0, x_0) = 0$$

for all $y \in \overline{I}_X(x_0)$. We also know that

$$\sum_{i=1}^{n} \beta_{i}(x_{0}) g_{x_{i}}(Sx_{0}) < \sum_{i=1}^{n} \beta_{i}(x_{0}) g_{x_{i}}(Tx_{0}).$$

By putting $g = \sum \beta_i(x_0) g_{x_i}$, we obtain the desired result for inward case.

For outward case, define upper demicontinuous maps S', $T': X \to 2^E$ by S'x=2x-Sx, T'x=2x-Tx, respectively. By the preceding inward case, either there exists $y_0 \in X$ for which $S'y_0$ and $T'y_0$ cannot be strictly separated by a closed hyperplane, or there exist $x_0 \in X$ and $g' \in E^*$ such that $g'(x_0-T'x_0) < g'(x_0-S'x_0)$ and $0 \le \inf_{z \in W(x_0)} g'(x_0-z)$.

The first alternative implies that Sy_0 and Ty_0 cannot be strictly separated by a closed hyperplane. Suppose that the second one holds. For any $y \in O_X(x_0)$, $z=2x_0-y$ lies in $I_X(x_0)$. Then we have

$$(-g')(x_0 - Tx_0) = (-g')(T'x_0 - x_0) = g'(x_0 - T'x_0)$$

$$< g'(x_0 - S'x_0) = (-g')(S'x_0 - x_0) = (-g')(x_0 - Sx_0),$$

and

$$0 \le g'(x_0 - z) = g'(y - x_0) = (-g')(x_0 - y)$$

for any $y \in O_X(x_0)$, and hence for any $y \in \overline{O}_X(x_0)$. By putting g = -g', we obtain the desired result for outward case.

Theorem 7 improves Takahashi [9, Theorem 8]. If S is the identity map of X, then Theorem 7 reduces to the following generalization of Theorem 4.

Theorem 8. Let X be a nonempty compact convex subset of a topological vector space E and T an upper demicontinuous map of X into 2^E such that for each $x \in X$, Tx is nonempty. Then, either there exists $y_0 \in X$ such that y_0 and Ty_0 cannot be strictly separated by a closed hyperplane, or there exist $x_0 \in X$ and $g \in E^*$ such that

$$g(x_0-Tx_0) < 0 < \inf_{y \in W(x_0)} g(x_0-y).$$

Theorem 8 improves Takahashi [9, Theorem 9]. As a consequence of Theorem 8, we have the following theorem.

Theorem 9. Let X be a nonempty compact convex subset of a locally convex topological vector space E and T an upper demicontinuous map X into 2^E such that for each $x \in X$, Tx is nonempty, closed and convex. If for each $x \in X$, there exists $\lambda < 1$ such that $(\lambda x + (1-\lambda)Tx) \cap W(x) \neq \phi$, then T has a fixed point.

Proof. Suppose T has no fixed point. By Theorem 8 there exist $x_0 \in X$ and $g \in E^*$ such that

$$g(x_0-Tx_0)<0\leq \inf_{y\in W(x_0)}g(x_0-y).$$

For this x_0 , we can choose $\lambda < 1$ and $z_0 \in Tx_0$ such that $y_0 := \lambda x_0 + (1-\lambda)z_0 \in W(x_0)$. Hence we have

$$g(x_0-z_0)<0\leq g(x_0-y_0)=(1-\lambda)g(x_0-z_0).$$

This is a contradiction. Therefore T has a fixed point.

In particular, if T is upper semicontinuous and W(x) is replaced by X, then Theorem 9 reduces to Browder [2, Theorem 3].

From Corollary 2 for a normed vector space, we obtain the following generalization of Ky Fan [4, Theorem 2].

Theorem 10. Let X be a nonempty compact convex subset of a normed vector space E and f a continuous map of X into E. Then there exists $x_0 \in X$ such that

$$||fx_0-x_0|| = \min_{y \in W(x_0)} ||fx_0-y||.$$

Proof. Define a real valued function g on $X \times E$ by g(x, y) = ||fx - y||. Then g is continuous and for each $x \in X$, the function g(x, y) of y is convex. Thus the desired result is obvious by Corollary 2.

4. Variational inequalities for multi-valued maps

By using Theorem 1, we generalize Theorem 2 to multi-valued

maps for inward case.

Theorem 11. Let X be a nonempty compact convex subset of a topological vector space E and T an upper semicontinuous map of X into 2^{E^*} such that for each $x \in X$, Tx is nonempty and compact. If for each $x \in X$,

$$\min_{y \in X} \max_{g \in Tx} \langle g, x - y \rangle = \max_{g \in Tx} \min_{y \in X} \langle g, x - y \rangle,$$

then there exist $x_0 \in X$ and $g_0 \in Tx_0$ such that $\langle g_0, x_0 - y \rangle \ge 0$ for all $y \in \overline{I}_X(x_0)$.

Proof. Define a real valued function f on $X \times X$ by $f(x, y) = \max_{x \in T_x} \langle g, x - y \rangle$.

For any $y \in X$ and $c \in R$, put $A = \{x \in X : f(x, y) \ge c\}$. We show that if $\{x_{\alpha} : \alpha \in I\}$ is a net in A converging to x_0 , then $x_0 \in A$. For each x_{α} there exists $g_{\alpha} \in Tx_{\alpha}$ such that $\langle g_{\alpha}, x_{\alpha} - y \rangle \ge c$. Since $\bigcup \{Tx : x \in X\}$ is compact, $\{g_{\alpha}\}$ has a subnet $\{g_{\alpha'}\}$ converging to g_0 . Since T is upper semicontinuous, $g_0 \in Tx_0$. Also we have $c \le \lim_{\alpha'} \langle g_{\alpha'}, x_{\alpha'} - y \rangle = \langle g_0, x_0 - y \rangle$. Hence $x_0 \in A$. That is, the function f(x, y) of x is upper semicontinuous. It is obvious that the function f(x, y) of y is convex and f(x, x) = 0 for all $x \in X$. By Theorem 1 for -f, there exists $x_0 \in X$ such that $\max \langle g, x_0 - y \rangle \ge 0$ for all $y \in X$. Since

$$\min_{y \in X} \max_{g \in Tx_0} \langle g, x_0 - y \rangle = \max_{g \in Tx_0} \min_{y \in X} \langle g, x_0 - y \rangle,$$

we have $g_0 \in Tx_0$ such that $\langle g_0, x_0 - y \rangle \geq 0$ for all $y \in X$. For $y \in I_X(x_0) \setminus X$, $y = x_0 + r(u - x_0)$ for some $u \in X$ and r > 1. So $\langle g_0, x_0 - y \rangle = r \langle g_0, x_0 - u \rangle \geq 0$. Hence $\langle g_0, x_0 - y \rangle \geq 0$ for all $y \in \bar{I}_X(x_0)$.

Theorem 11 improves Takahashi [9, Theorem 21]. In particular, if Tx is convex, the minimax equality in Theorem 11 holds. So we have the following corollary which is an extension of Browder [2, Theorem 6].

Corollary 4. Let X be a nonempty compact convex subset of a topological vector space E and T an upper semicontinuous map of X into 2^{E^*} such that for each $x \in X$, Tx is nonempty, compact and convex. Then there exist $x_0 \in X$ and $g_0 \in Tx_0$ such that $\langle g_0, x_0 - y \rangle \geq 0$ for all $y \in \overline{I}_X(x_0)$.

Proof. We need only show that for each $x \in X$, $\min_{y \in X} \max_{g \in T_x} \langle g, x - y \rangle = \max_{g \in T_x} \min_{y \in X} \langle g, x - y \rangle.$

Let $x \in X$ and $c = \max_{g \in T_X} \min_{y \in X} \langle g, x - y \rangle$. For each $g \in T_X$, put $A(g) = \{y \in X : \langle g, x - y \rangle \leq c\}$. Let $\{g_1, g_2, ..., g_n\}$ be a finite subset of T_X and $\{r_1, r_2, ..., r_n\}$ be nonnegative numbers with $\sum_{i=1}^n r_i = 1$. For $\sum_{i=1}^n r_i g_i \in T_X$, there is $y_0 \in X$ such that $\sum_{i=1}^n r_i \langle g_i, x - y_0 \rangle = \langle \sum_{i=1}^n r_i g_i, x - y_0 \rangle \leq c$. Thus there exists $z \in X$ such that $\langle g_i, x - z \rangle \leq c$ for i = 1, 2, ..., n. Since the family $\{A(g) : g \in T_X\}$ has the finite intersection property and X is compact, we have $\bigcap \{A(g) : g \in T_X\} \neq \emptyset$. Let $y_0 \in \bigcap \{A(g) : g \in T_X\}$. Then $\max \langle g, x - y_0 \rangle \leq c$. Hence we have

 $\min_{y} \max_{g} \langle g, x - y \rangle \leq \max_{g} \langle g, x - y_{0} \rangle \leq \max_{g} \min_{g} \langle g, x - y \rangle.$ On the other hand it is obvious that

$$\max_{g} \min_{y} \langle g, x-y \rangle \leq \min_{y} \max_{g} \langle g, x-y \rangle.$$

Theorem 12. Let X be a nonempty compact convex subset of Euclidean space R^n and T an upper semicontinuous map of X into 2^{R^n} such that for each $x \in X$, Tx is nonempty and compact. If for each $x \in X$,

$$\min_{y \in X} \max_{z \in Tx} \langle z - x, x - y \rangle = \max_{z \in Tx} \min_{y \in X} \langle z - x, x - y \rangle,$$

then there exist $x_0 \in X$ and $z_0 \in Tx_0$ such that $\langle z_0 - x_0, x_0 - y \rangle \ge 0$ for all $y \in \overline{I}_X(x_0)$.

Proof. Setting $f(x, y) = \max_{z \in Tx} \langle z - x, x - y \rangle$ for $x, y \in X$ and applying the argument in Theorem 11, we obtain the desired result.

Theorem 12 improves Takahashi [9, Theorem 22].

Corollary 5. Let X be a nonempty compact convex subset of Euclidean space R^n and T an upper semicontinuous map of X into 2^{R^n} such that for each $x \in X$, Tx is nonempty, compact and convex. Then there exist $x_0 \in X$ and $z_0 \in Tx_0$ such that $\langle z_0 - x_0, x_0 - y \rangle \geq 0$ for all $y \in \overline{I}_X(x_0)$.

Proof. We need only show that for each $x \in X$,

$$\min_{y \in X} \max_{z \in Tz} \langle z - x, x - y \rangle = \max_{z \in Tz} \min_{y \in X} \langle z - x, x - y \rangle.$$

This follows from the argument in Corollary 4.

In Theorem 12, if T is a map of X into 2^X , by putting $y=z_0$, we obtain $z_0=x_0$, that is, $x_0 \in Tx_0$. In particular, the Kakutani fixed point theorem is obtained.

Corollary 6. [7] Let X be a nonempty compact convex subset of Eulidean space R^n and T an upper semicontinuous map of X into 2^X such that for each $x \in X$, Tx is nonempty, compact and convex. Then T has a fixed point.

References

- 1. F. E. Browder, On a new generalization of the Schauder fixed point theorem, Math. Ann. 174(1967), 285-290.
- 2. F.E. Browder, The fixed point theory of multi-valued mappings in topological vector spaces, Math. Ann. 177(1968), 283-301.
- K. Fan, Sur un theoreme minimax, C. R. Acad. Sci. Paris, 259(1962), 3925-3928.
- 4. K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z. 112(1969), 234-240.
- 5. K. Fan, A minimax inequality and applications, Inequalities III (Ed. O. Shisha), Academic Press, 1972, 103-113.
- 6. P. Hartman and G. Stampacchia, On some nonlinear elliptic differential functional equations, Acta Math. 115(1966), 271-310.
- S. Kakutani, A generalization of Brouwer's fixed point theorem, Duke Math. J. 8(1941), 457-459.
- 8. S. Park, Fixed point theorems on compact convex sets in topological vector spaces, Contemporary Math. 72(1988), 183-191.
- 9. W. Takahashi, Nonlinear variational inequalities and fixed point theorems, J. Math. Soc. Japan 28(1976), 168-181.

Seoul National University and

The Mathematical Sciences Research Institute of Korea Seoul 151–742, Korea