EXPONENTIATION OF HOLOMORPHIC FUNCTIONS

Do Y. Kwak* and U Jin Choi

1. An inequality for the coefficients of composite functions

We fix a positive integer n and let B be the unit ball in \mathbb{C}^n and Δ be the unit disk in \mathbb{C} . For $z, \xi \in \mathbb{C}^n$, we let

$$\langle z, \xi \rangle = z_1 \overline{\xi}_1 + \dots + z_n \overline{\xi}_n, \quad ||z|| = \langle z, z \rangle^{1/2}$$

and let $A_q^p(B)$ be the space of all holomorphic functions f in the ball B with

$$||f||_{p,q}^p = \int_B |f|^p dv_q < \infty \ (1 \le p < \infty, \ 0 \le q \le 1)$$

where for $0 < q \le 1$

$$dv_q(z) = \frac{\Gamma(n+q)}{\pi^n \Gamma(q)} (1 - ||z||^2)^{q-1} dv(z)$$

is the probability measure on B and dv_0 denote the unit surface measure on ∂B . We also let $A_{q,s}^p(B)$ be the space of holomorphic functions $f(z) = \sum_{a\geq 0} a_a z^a$ on B with $D^s f \in A_q^p(B)$, where $D^s f(z) = \sum_{a\geq 0} (|\alpha|+1)^s a_a z^a$. We

note that when p=2, A_{q+s}^2 becomes a Hilbert space and

$$||D^{s}f||_{2:q}^{2} = \Gamma(q+n) \sum_{\alpha \geq 0} \frac{\alpha! (|\alpha|+1)^{2s}}{\Gamma(n+|\alpha|+q)} |a_{\alpha}|^{2}.$$

For other properties of the spaces $A_q^p(B)$ and $A_{q+s}^p(B)$, we refer to [1]. We let $\alpha, \beta, \gamma, \delta$ denote the multi-index with $\alpha! = \alpha_1! \cdots \alpha_n!$, $|\alpha| = \alpha_1 + \cdots + \alpha_n$, $z^{\alpha} = z_1^{\alpha_1} \cdots z_n^{\alpha_n}$ etc.

Suppose F is a function given by the formal power series

$$F(w) = \sum_{j=0}^{\infty} F_j w^j \quad (F_j \ge 0, \quad w \in \mathbb{C}).$$

For any function f defined by the formal expansion

$$f(z) = \sum_{\alpha \geq 0} a_{\alpha} z^{\alpha} \ (z \in \mathbb{C}^n, \ a_{\alpha} \in \mathbb{C}, \ \alpha \in \mathbb{Z}_+^n),$$

we let $A_{\alpha}^{(f)}$ be the coefficients of the composite function $F \circ f$, i.e.,

$$\{F \circ f\} (z) = \sum_{j=0}^{\infty} F_j(f(z))^j = A_0^{(f)} + \sum_{\alpha \geq 0} A_{\alpha}^{(f)} z^{\alpha}.$$

Received December 29, 1988.

^{*} Partially supported by the Ministry of Education.

It follows that $A_{\alpha}^{(f)}$ are functions of a_{β} with $A_{\alpha}^{(f)} = F_0$ and in general $A_{\alpha}^{(f)} = A_{\alpha}(\{a_{\beta}\})$, $\beta \leq \alpha$. We will show that $A_{\alpha}(\{a_{\beta}\})$ is a linear combination of certain products of powers of a_{β} . We observe that

or
$$\sum_{k=0}^{\infty} F_k \left(\sum_{\alpha > 0} a_{\alpha} z^{\alpha} \right)^k = \sum_{\alpha \geq 0} \left(\sum_{j=0}^{|\alpha|} F_j \sum_{\beta_1 + \dots + \beta_j = \alpha} a_{\beta_1} \dots a_{\beta_j} \right) z^{\alpha}$$

$$(1.1) \qquad A_{\alpha} \left(\left\{ a_{\beta} \right\} \right) = \sum_{j=0}^{|\alpha|} F_j \left(\sum_{\beta_1 + \dots + \beta_j = \alpha} a_{\beta_1} \dots a_{\beta_j} \right) = \sum_{k} A_{\alpha, k} \prod_{i} a_{\beta i}^{\gamma i},$$

where the products are distinct and $A_{\alpha,k}>0$ when $F_1, ..., F_{|\alpha|}>0$. If we write $U_{\alpha,k}(\{\alpha_{\beta}\})$ for the corresponding products, then using the homogeneity of $U_{\alpha,k}$ in a_{β} one can easily see that for any coefficients a_{α} , b_{β} ,

$$U_{\alpha, k}(\{a_{\beta}b_{\beta}\}) = U_{\alpha, k}(\{a_{\beta}\}) U_{\alpha, k}(\{b_{\beta}\}) ;$$

for any real number r,

$$|U_{\alpha,k}(\{d_{\beta}\})|^r = U_{\alpha,k}(\{|d_{\beta}|^r\});$$

for any $\xi \in \mathbb{C}^n$ and $\beta \leq \alpha$,

$$U_{\alpha,k}(\{\xi^{\beta}\}) = \xi^{\alpha}U_{\alpha,k}(\{1\}) = \xi^{\alpha}, 1 = (1,...,1).$$

For $z, \xi \in \mathbb{C}^n$ and $0 we write <math>z \cdot \xi = (z_1 \xi_1, ..., z_n \xi_n)$ and $|z|^p = (|z_1|^p, ..., |z_n|^p) \in \mathbb{R}^n$. A domain D is said to be complete Reinhardt domain if $z \in D$ implies $z \cdot \xi \in D$ for every $\xi \in \overline{\Delta}^n$. If we define

$$D(p) = \{z \in \mathbb{C}^n : |z|^{p/2} \in D\}, \ 0$$

then D(p) is a complete Reinhardt domain with D(2) = D. We note that if $D = \Delta^n$, then D(p) = D for all $0 . We fix a function <math>\phi$ determined by the formal power series

$$\phi(z) = \sum_{\alpha>0} c_{\alpha}z^{\alpha} (c_{\alpha}>0).$$

LEMMA 1.1. Let α be in \mathbb{Z}_+^n . Then for $\beta \leq \alpha$ and any p with $1 \leq p < \infty$, the Taylor coefficients of the composite function $F \circ f$ satisfy $|A_{\alpha}(\{a_{\beta}\})| \leq |A_{\alpha}(\{c_{\beta}^{1-p}|a_{\beta}|^p\})|^{1/p} \cdot |A_{\alpha}(\{c_{\beta}\})|^{(p-1)/p}$.

For $1 , equality holds if <math>a_{\beta} = c_{\beta} \xi^{\beta}$ for some $\xi \in \mathbb{C}^n$. If, in addition, $F_1, ..., F_{+\alpha} > 0$, this condition is also necessary.

Proof. We let
$$d_{\alpha} = a_{\alpha}/c_{\alpha}$$
 so that $f(z) = \sum_{\alpha>0} c_{\alpha}d_{\alpha}z^{\alpha}$ and
$$A_{\alpha}(\{a_{\beta}\}) = A_{\alpha}(\{c_{\beta}d_{\beta}\}) = \sum_{k} A_{\alpha,k}U_{\alpha,k}(\{c_{\beta}d_{\beta}\}).$$

Using Hölder's inequality with p'=p/(p-1) and the properties of $U_{a,k}$, we obtain

$$|A_{\alpha}(\{a_{\beta}\})| \leq \sum_{k} A_{\alpha,k} |U_{\alpha,k}(\{c_{\beta}d_{\beta}\})|$$

$$= A_{\alpha}(\{c_{\beta} | d_{\beta} | p\})^{1/p} \cdot A_{\alpha}(\{c_{\beta}\})^{1/p'}$$

and the desired inequality follows. When $a_{\beta} = c_{\beta} \xi^{\beta}$, $\beta \leq \alpha$, $\xi \in \mathbb{C}^n$ we have $A_{\alpha}(\{c_{\beta} \xi^{\beta}\}) = \sum \xi^{\alpha} A_{\alpha,k} U_{\alpha,k}(\{c_{\beta}\}) = \xi^{\alpha} A_{\alpha}(\{c_{\beta}\})$.

Thus

$$\begin{aligned} |A_{\alpha}(\{a_{\beta}\})| &= |\xi^{\alpha}| \cdot A_{\alpha}(\{c_{\beta}\})^{1/p} \cdot A_{\alpha}(\{c_{\beta}\})^{1/p'} \\ &= A_{\alpha}(\{c_{\beta}|\xi^{\beta}|p'\})^{1/p} \cdot A_{\alpha}(\{c_{\beta}\})^{1/p'} \end{aligned}$$

and the equality holds in this case. Conversely, assume the equality holds. Writing $c_{\beta}d_{\beta} = \eta_{\beta}c_{\beta}|d_{\beta}|$, $\eta_{\beta} \in \mathbb{C}$, $|\eta_{\beta}| = 1$, we have

$$U_{\alpha,k}(\lbrace c_{\beta}d_{\beta}\rbrace) = U_{\alpha,k}(\lbrace \eta_{\beta}\rbrace) U_{\alpha,k}(\lbrace c_{\beta}|d_{\beta}|\rbrace).$$

It follows that (1.2) becomes equality if and only if $U_{\alpha,k}(\{\eta_{\beta}\})$ is independent of k and (1.3) becomes equality if and only if $A_{\alpha,k}U_{\alpha,k}(\{c_{\beta}|d_{\beta}|P\}) = c(\alpha)A_{\alpha,k}U_{\alpha,k}(\{c_{\beta}\})$ for some constant $c(\alpha)>0$ and every k. Since $A_{\alpha,k}>0$ when $F_1, ..., F_{|\alpha|}>0$, we conclude that

$$U_{\alpha,k}(\{d_{\beta}\}) = c(\alpha)^{1/p} e^{i\theta} \ (0 \le \theta < 2\pi)$$

for every k. In particular, all monomials of the form $\prod_{\ell} d_{\beta \ell}^{\eta \ell}$ are equal. Hence $d_{\beta} = \xi^{\beta}$ for every $\beta \leq \alpha$ where $\xi = (d_1, ..., d_n) \in C^n$. This completes the proof.

REMARK. When p=2 this result appears in [3] with different proof, while n=1 and $1 \le p < \infty$ the result appears in [5]. This remark applys to the theorem below as well.

We fix a complete Reinhardt domain D such that $\phi(z \cdot \bar{z}) = \sum c_{\alpha}|z|^{2\alpha} < \infty, z \in D$ and $\phi(z \cdot \bar{z}) = \infty, z \in \partial D$. Then we see that $\phi(|z|^p) < \infty, z \in D(p), 1 \le p < \infty$ and we have

Theorem 1.2. If for some $p \ge 1$ the Taylor coefficients of f and F satisfy

$$(1.4) \qquad \sum_{\alpha>0} c_{\alpha}^{1-p} |a_{\alpha}|^{p} = \sigma < \infty, \quad \sum_{k>0} F_{k} \sigma^{k} < \infty,$$

then

(1.5)
$$\sum_{\alpha\geq 0} A_{\alpha}(\{c_{\beta}\})^{1-p} |A_{\alpha}(\{a_{\beta}\})|^{p} \leq F(\sum_{\alpha\geq 0} c_{\alpha}^{1-p} |a_{\alpha}|^{p}).$$

For $1 , equality holds if <math>a_{\alpha} = c_{\alpha} \xi^{\alpha}$ for all $\alpha > 0$ and for some $\xi \in D(p)$. This condition is also necessary if $F_m > 0$, m = 1, 2, ...

Proof. By Lemma 1.1, we have

$$(1.6) A_{\alpha}(\{c_{\beta}\})^{1-p} |A_{\alpha}(\{a_{\beta}\})|^{p} \leq A_{\alpha}(\{c_{\beta}^{1-p}|a_{\beta}|^{p}\}.$$

Fix an integer N and sum over all α with $|\alpha| \le N$ to obtain

$$\sum_{|\alpha| \leq N} A_{\alpha}(\{c_{\beta}\})^{1-p} |A_{\alpha}(\{a_{\beta}\})|^{p} \leq \sum_{|\alpha| \leq N} A_{\alpha}(\{c_{\beta}^{1-p} |a_{\beta}|^{p}\}).$$

By (1.4), the function $g(z) = \sum_{\alpha>0} c_{\alpha}^{1-p} |a_{\alpha}|^p z^{\alpha}$ is holomorphic in Δ^n , while F(w) is holomorphic in the disk $|w| < \sigma$. Hence $(F \circ g)(z) = \sum A_{\alpha}(\{c_{\beta}^{1-p} |a_{\beta}|^p\})z^{\alpha}$ is holomorphic in Δ^n . Moreover,

$$\sum_{|a| \leq N} A_{\alpha}(\{c_{\beta}^{1-p} | a_{\beta}|^{p}\}) \leq \sum_{k=0}^{\infty} F_{k}(g(1))^{k} = F(\sigma),$$

where $\mathbf{1} = (1, ..., 1)$. Note that $g(\mathbf{1})$ and $F(\sigma)$ are both well defined. Hence by Abel's theorem

$$\sum_{\alpha>0} A_{\alpha}(\left\{c_{\beta}^{1-p} | a_{\beta}|^{p}\right\}) = \lim_{r \to 1^{-}} F(g(r)) = F(\sigma),$$

where $\mathbf{r}=(r_1, ..., r_n) \in \mathbf{R}^n$. Letting $N \to \infty$, we obtain the result. For $1 , equality holds if and only if equality holds in (1.6) for every <math>\alpha > 0$, which is true if $a_{\alpha} = c_{\alpha} \xi^{\alpha}$ for some $\xi \in \mathbf{C}^n$. When $F_m > 0$, $m=1,2,..., a_{\alpha} = c_{\alpha} \xi^{\alpha}(\alpha)$ by Lemma 1.1, we need to show that ξ is independent of α . Without loss of generality, we assume $a_{\alpha} \neq 0$ for some α and we let $a_{\gamma} = c_{\gamma} \xi^{\gamma}(\gamma)$ and $a_{\delta} = c_{\delta} \xi^{\delta}(\delta)$ and let $\beta \le \alpha$ with $\gamma \le \beta$, $\delta \le \alpha$. Then $\xi(\gamma) = \xi(\beta)$ and $\xi(\delta) = \xi(\alpha)$. But since also $\beta \le \alpha$, we have $a_{\beta} = c_{\beta} \xi^{\beta}$ with $\xi = \xi(\alpha)$. Hence $\xi(\alpha) = \xi(\beta)$ and thus $\xi(\gamma) = \xi(\delta)$. Moreover, in this case $\phi(|\xi|^p) < \infty$ and hence $\xi \in D(p)$.

2. Application for the exponential function

In this section, we define certain space of sequences and study exponentiation of holomorphic functions. For $0 we define <math>l_{\phi}^{p}$ as the space of all sequences $\{a_{\alpha}\}$, $\alpha \in \mathbb{Z}_{+}^{n}$ with

$$\|\{a_{\alpha}\}\|_{l_{\phi}^{p}} = \{\sum_{\alpha>0} c_{\alpha}^{1-p} |a_{\alpha}|^{p}\}^{1/p} < \infty.$$

We also define $l_{\phi}^{p}(D(p'))$ $(p'=p/(p-1), 1 as the space of all holomorphic functions <math>f(z) = \sum_{\alpha>0} a_{\alpha} z^{\alpha} (z \in D(p'))$ with

$$||f||_{p,\phi} = ||\{a_{\alpha}\}||_{L^{p}} < \infty.$$

Then the mapping $\Lambda: l_{\phi}^{p} \rightarrow l_{\phi}^{p}(D(p'))$ defined as

$$\Lambda(\{a_{\alpha}\}) = \sum_{\alpha>0} a_{\alpha}z^{\alpha}$$

is an isometry, since if $\{a_{\alpha}\} \in l_{\phi}^{p}$ then

$$\sum_{\alpha>0} |a_{\alpha}z^{\alpha}| \leq \{ \sum_{\alpha>0} c_{\alpha}^{1-p} |a_{\alpha}|^{p} \}^{1/p} \{ \sum_{\alpha>0} c_{\alpha} |z^{\alpha}|^{p'} \}^{1/p'}$$

$$= ||\{a_{\alpha}\}||_{l_{p}^{b}} \{ \phi(|z|^{p'}) \}^{1/p'} < \infty$$

for all $z \in D(p')$. Hence $f \in l_{\varphi}^{p}(D(p'))$ and since $\|\{a_{\alpha}\}\|_{l_{\varphi}^{p}} = \|f\|_{p, \phi}$, $f \in l_{\varphi}^{p}(D(p'))$ implies $\{a_{\alpha}\} \in l_{\varphi}^{p}$, completing the proof.

We choose $F(\lambda) = e^{\lambda}$, $\lambda \in \mathbb{C}$ and $\phi(z) = -q \log(1 - \langle z, 1 \rangle)$. $z \in B, q > 0$. In this case we find that $c_{\alpha} = q \Gamma(|\alpha|)/\alpha!$ and that the coefficients of

 $F \circ \phi$ are $\Gamma(q + |\alpha|) / \Gamma(\alpha) \alpha!$. If $f(z) = \sum_{\alpha>0} a_{\alpha} z^{\alpha} \in l_{\phi}^{p}(B(p'))$ then f satisfies (1.4) and (1.5) becomes

(2.1)
$$\sum_{\alpha\geq 0} (\Gamma(q+|\alpha|)/\Gamma(q)\alpha!)^{1-p} |A_{\alpha}^{(f)}|^{p} \leq \exp\left(\sum_{\alpha\geq 0} (q\Gamma(|\alpha|)/\alpha!)^{1-p} |a_{\alpha}|^{p}\right).$$

Equality holds if and only if $a_{\alpha} = q\Gamma(|\alpha|)/\alpha!\bar{\xi}^{\alpha}$ for some $\xi \in B(p)$, i.e., if and only if $f(z) = -q \log(1 - \langle z, \xi \rangle)$ for some $\xi \in B(p)$. In the terminology introduced in the beginning of this section, we have just proved the following:

THEOREM 2.1. Let 1 and <math>p' = p/(p-1). Then $e^f \in l_{\varphi}^p(B(p'))$ whenever $f \in l_{\varphi}^p(B(p'))$ with

$$||e^f||_{p,e\phi}^p \le \exp(||f||_{p,\phi}^p).$$

Equality holds if and only if $f(z) = \phi(z \cdot \overline{\xi})$ for some $\xi \in B(p)$.

As a special case, if p=2, we get the following result of Burbea [3].

COROLLARY 2.2. Let k be any positive integer with $2k-n\geq 0$ and let $q\geq n$. Then for any $f\in A^2_{2k-n+k}$ with f(0)=0, there exists a constant c independent of f such that

$$||e^f||_{q-n}^2 \le \exp(c||D^k f||_{2k-n}^2).$$

In particular, $e^f \in A_{q-n}^2$.

Proof. We have, by Sterling's formula, for $f \in A^2_{2k-n+k}$ with f(0) = 0,

$$||D^{k}f||_{2k-n}^{2} = \Gamma(2k) \sum_{\alpha>0} \frac{\alpha!}{\Gamma(|\alpha|+2k)} (|\alpha|+1)^{2k} |a_{\alpha}|^{2}$$

$$\sim c \sum_{\alpha>0} \frac{\alpha!}{\Gamma(|\alpha|)} |a_{\alpha}|^{2}$$

while $||e^f||_{q-n}^2 = \Gamma(q) \sum_{\alpha \geq 0} \frac{\alpha!}{\Gamma(q+|\alpha|)} |A_{\alpha}^{(f)}|^2$. This completes the proof.

References

- 1. F. Beatrous, Jr. and J. Burbea, Sobolev spaces of holomorphic functions in the ball, Pitman Research Notes in Mathematics, (to appear).
- 2. J. Burbea, A Dirichlet norm inequality and some inequalities for reproducing kernel spaces, Proc. Amer. Math. Soc. 83(1981), 279-285.
- 3. J. Burbea, Inequalities for holomorphic functions of several complex variables, Trans. Amer. Math. Soc. 276(1983), 247-266.
- 4. Do Y. Kwak, Hardy-Littlewood inequalities for the weighted Bergman

spaces, Comm. of KMS 2 No.1 (1987), 33-38.

5. I.M. Milin, Univalent Functions and orthogonal systems, Translation of Mathematical Monographs, Vol. 49, AMS, providence, R. I., 1977.

Korea Institute of Technology Taejon 305-701, Korea