THE EXTENSION OF SOLUTIONS FOR THE CAUCHY PROBLEM IN THE COMPLEX DOMAIN

EUN GU LEE AND DOHAN KIM

Introduction

In [4], J. Leray introduced the notion of partial hyperbolicity to characterize the operators for which the non-characteristic Cauchy problem is solvable in the Gevrey class for any data which are holomorphic in a part of variables \(x'' = (x_2, ..., x_l) \) in the initial hyperplane \(x_1 = 0 \). A linear partial differential operator is called partially hyperbolic modulo the linear subvarieties \(S : x'' = \text{constant} \) if the equation \(P_m(x, \zeta_1, \zeta') = 0 \) for \(\zeta_1 \) has only real roots when \(\zeta' \) is real and \(\zeta'' = 0 \), where \(P_m \) is the principal symbol of \(P \).

Limiting to the case of operators with constant coefficients, A. Kaneko proposed a new sharper condition when \(S \) is a hyperplane [3].

In this paper, we generalize this condition to the case of general linear subvariety \(S \) and show that it is sufficient for the solvability of Cauchy problem for the hyperfunction Cauchy data which contains variables parallel to \(S \) as holomorphic parameters.

Let \(P(D) \) be an \(m \)-th order linear partial differential operator in \(\mathbb{R}^s \) with constant coefficients, and let \(P_m(D) \) be its principal part. Assume that \(x_1 = 0 \) is non-characteristic with respect to \(P \). We use the following notation for the separation of the independent variables; \(x = (x_1, x') = (x_1, x'', x''') \) with \(x'' = (x_2, ..., x_l) \) and similar notation for the complexification \(z = x + \sqrt{-1} y \) for the dual variables \(\zeta = \xi + \sqrt{-1} \eta \).

We let \(\Gamma \) be a convex open cone in \(\mathbb{R}^{s-l} \) and \(\Delta \) be a convex open cone such that \(\Delta \subset \subset \Gamma \), i.e., \(\bar{\Delta} \) is a compact subset of \(\Gamma \).

Received January 6, 1989.
Revised August 24, 1989.
Supported by KOSEF and Ministry of Education.
Lemma. Consider the holomorphic Cauchy problem

\[(2.1) \quad \begin{cases} P(D)F(x) = 0 \\ \left(\frac{\partial}{\partial z_1} \right)^j F(x) \bigg|_{z_1=0} = F_j(x'), \ j = 0, \ldots, m-1 \end{cases} \]

The holomorphic data \(F_j(x')\) are given on a domain of the form \(\{x' \in \mathbb{C}^{n-1} | |x'| < A, \ y''' \in \Gamma, |y'| < B}\). Also, for some constant \(b, c > 0\), we have

\[(2.2) \quad -\text{Im} \ \zeta' \leq b \ |\text{Im} \ \zeta'''| + c |\zeta'''|\]

if \(\text{Re} \ \zeta''' \in \Delta^c\).

Then the solution can be continued onto the domain

\[W = \{z \in \mathbb{C}^n | 0 < x_1 < \delta, |x| < A', \lambda |y_1| < \text{dis}(y''', \partial \Gamma'), |y'| < B'\}\]

where \(A', B', \lambda\) and \(\delta\) are suitable positive constants.

Proof. First note that by the Cauchy–Kowalevsky theorem, the solution exists on a domain

\[\tilde{W} = \{z \in \mathbb{C}^n | |z_1| < k \ \text{dis}(y'''', \partial \Gamma), |x'| < A/2, |y''| < B', y''''' \in \Gamma, |y'''| < B/2\}\]

where \(k\) is a positive constant. Starting from this open set, we may use the method of Bony–Schapira [1]. Choose

\[z_0 = (t + \sqrt{-1}s, 0, \ldots, 0, \sqrt{-1}y_0)\]

where \(t > 0, y_0 \in \Gamma, |y_0| < \varepsilon\). If every real characteristic hyperplane passing through this point intersects \(\tilde{W}\), then the solution \(F(z)\) can be continued up to the interior of \(\text{ch}^{-1}\{z_0 \cup \tilde{W}\}\).

A characteristic hyperplane passing through \(z_0\) is expressed by the following equation

\[(2.3) \quad -\text{Re} \ <z - z_0, \sqrt{-1}\zeta> = x \cdot \eta + y \cdot \xi - t \eta_1 - s \xi_1 - y_0 \cdot \xi''' = 0\]

where \(\zeta = \xi + \sqrt{-1}\eta\) satisfies \(P_m(\zeta) = 0\). The fact that \(P_m(\zeta) = 0\) and the non-characteristic assumption imply that there exists \(M > 0\) such that

\[|\xi_1| \leq M |\zeta'|\].

We consider the following two cases.

(1) Case \(|\xi'| \leq |\eta'|\).

The point

\[x_1 = 0, \ x' = \frac{t \eta_1 + s \xi_1}{|\eta'|^2} \eta', \ y_1 = \eta' = 0, \ y''' = y_0\]

satisfies (2.3). Since we have

\[|\xi_1| \leq |\zeta_1| \leq M |\zeta'| \leq \sqrt{2} M |\eta'|\]

and similarly, \(|\eta_1| \leq \sqrt{2} M |\eta'|\), this point is contained in \(\tilde{W}\) provided that
The extension of solutions for the Cauchy problem in the complex domain

\[|x'| \leq \frac{t|\eta_1| + |s||\xi_1|}{|\eta'|} \leq \sqrt{2} M(t + |s|) < A/2 \]

and \(\varepsilon < B/2 \).

(2) Case \(|\xi'| \geq |\eta'| \).

First suppose that \(|\xi''| \leq |\xi'''| \).

The point

\[x = 0, \quad y_1 = 0, \quad y'' = t\eta_1 + s\xi_1 \]

satisfies (2.3). Since we have

\[|\xi_1| \leq M |\xi'| \leq \sqrt{2} M |\xi'| \leq 2M |\xi'''| \]

and \(|\eta_1| \leq 2M |\xi'''| \), this point is contained in \(\tilde{W} \) provided that

\[|y''| \leq \frac{t|\eta_1| + |s||\xi_1|}{|\xi'''|} \leq 2M(t + |s|) < B/2 \]

and \(\varepsilon < B/2 \).

Next consider \(\zeta \in C^n \) such that \(|\xi'''| \geq |\xi''| \) and \(\text{Re} \xi''' \in \Delta^0 \). Then there exists \(\gamma \in \Gamma \) with \(|\gamma| = 1 \) such that

\[\xi''' \cdot \gamma < -C |\xi'''| \]

where \(C \) is a constant (independent of \(\xi''' \)). The point

\[x = 0, \quad y_1 = y'' = 0, \quad y''' = y_0 + \frac{t\eta_1 + s\xi_1}{\xi''' \cdot \gamma} \gamma \]

satisfies (2.3). Without loss of generality, we can assume that \(t\eta_1 + s\xi_1 \leq 0 \). (If this is not the case, then we can replace \(\zeta \) by \(-\zeta \).)

Since we have

\[|\xi_1| \leq M |\xi'| \leq 2M |\xi'''| \]

and, similarly, \(|\eta_1| \leq 2M |\xi'''| \), this point is contained in \(\tilde{W} \) provided that

\[|y'''| \leq |y_0| + \frac{t|\eta_1| + |s||\xi_1|}{|\xi''' \cdot \gamma|} \leq \varepsilon + \frac{2M(t + |s|)}{C} < B/2. \]

Finally, consider \(\zeta \in C^n \) such that \(|\xi'''| \geq |\xi''| \) and \(\text{Re} \xi''' \in \Delta^0 \). If \(\eta_1 > 0 \), then we have

\[s\xi_1 \leq t\eta_1 + s\xi_1 \leq 0. \]

Therefore, the point

\[x = 0, \quad y_1 = \frac{t\eta_1 + s\xi_1}{\xi_1}, \quad y'' = 0, \quad y''' = y_0 \]

satisfies (2.3). This point is contained in \(\tilde{W} \) provided that

\[|z_1| \leq |s| < k \text{dis}(y_0, \partial \Gamma) \]
and $\varepsilon < B/2$.

If $\eta_1 \leq 0$, by hypothesis, we have a decomposition of form

$$\eta_1 = \alpha + \beta + \gamma$$

where $|\alpha| \leq b|\eta''|$, $|\beta| \leq c|\zeta''|$, $|\gamma| \leq c|\eta''|$. The point

$$x_1 = 0, \quad x'' = \frac{t\gamma}{|\eta''|^2} \eta'', \quad x''' = \frac{t\alpha}{|\eta''|^2} \zeta''',$$

$$y_1 = s, \quad y'' = \frac{t\beta}{|\zeta''|^2} \zeta'', \quad y''' = \gamma_0$$

satisfies (2.3). If $|x'| \leq t(b^2 + c^2)^{1/2} < A/2$, $|y'| \leq tC < B/2$ and $|z_1| = |s| \leq k \text{dis}(\gamma_0, \partial I')$, $\varepsilon < B/4$, then this point is contained in \hat{W}.

Now by (1) and (2), if we choose $K, s, \varepsilon > 0$ such that $t + |s| < K$, $|s| \leq k \text{dis}(\gamma_0, \partial I')$, $\varepsilon < B/4$ where

$$K = \min \left\{ \frac{B}{4M}, \frac{BC}{8M}, \frac{A}{2 \sqrt{2} M'}, \frac{A}{2(b^2 + c^2)^{1/2}}, \frac{B}{2C} \right\},$$

then the solution $F(z)$ can be continued up to $\text{ch}[\{z_0 \cup \hat{W}\}]$ for every $t > 0$, $\varepsilon > 0$. When we let them vary under these conditions and make the unions of these convex domains, we clearly obtain a domain of the form W.

Theorem. Assume that for some constant $b, c > 0$.

$$-\text{Im} \zeta_1 \leq b \text{Im} \zeta'' | + c |\zeta''|,$$

if $\text{Pm}(\zeta) = 0$ and $\text{Re} \zeta'' \in \Delta$. Assume that the hyperfunction data $u_j(x')$, $j = 0, \ldots, m-1$, can be expressed as the boundary values of functions $F_j(z')$ holomorphic in $[\mathbb{R}^{n-1} \times i(\mathbb{R}^{l-1} \times I')] \cap \{|z'| < \delta\}$. Then on a neighborhood of the origin we can solve the following boundary value problem

$$\begin{cases}
P(D)u = 0 \\
\left(\frac{\partial}{\partial x_1}\right)^j u \big|_{x_1 = 0} = u_j(x'), \quad j = 0, \ldots, m-1.
\end{cases}$$

Proof. With the initial data $F_j(z')$, we are going to solve the holomorphic Cauchy problem (2.1). Put $A = B = \delta / \sqrt{2}$. Then by Lemma, the holomorphic solution $F(z)$ can be continued to the domain

$$W = \{z \in \mathbb{C}^n | 0 \leq x_1 < A', |x'| \leq A', \lambda |y_1| < \text{dis}(\zeta''', \partial I'),$$

$$|y'| < B', |y''| < B'\}$$

which is a wedge with its edge tangent to the real axis. Thus $F(z)$ continued there defines a hyperfunction solution $u(x)$ of $P(D)u = 0$ on
$x_1 > 0$ locally on a neighborhood of the origin. Moreover, by [3, Lemma 2.6], the boundary values of u agree with the given data u_j. Therefore the proof is complete.

Similarly, for the boundary value problem to $x_1 < 0$, we can prove the sufficient condition

$$\text{Im } \zeta_1 \leq b |\text{Im } \zeta'''| + c |\zeta'''| \quad \text{if } P_m(\zeta) = 0, \quad \text{Re } \zeta''' \in \Delta^0$$

for some constant $b, c > 0$.

Corollary 1. Assume that for some constant $b, c > 0$,

$$|\text{Im } \zeta_1| \leq b |\text{Im } \zeta'''| + c |\zeta'''|$$

if $P_m(\zeta) = 0$ and $\text{Re } \zeta''' \in \Delta^0$. Assume that the hyperfunction data $u_j(x')$ can be expressed as the boundary values of functions $F_j(x')$ holomorphic in $\{R_n \times i(R_l \times l') \} \cup \{|z'| < \delta\}$. Then the Cauchy problem

$$
\begin{align*}
P(D)u &= 0 \\
\left(\frac{\partial}{\partial x_1} \right)^j u \big|_{x_1 = 0} &= u_j(x'), \quad j = 0, \ldots, m - 1
\end{align*}
$$

admits a hyperfunction solution which contains the same holomorphic parameters.

Corollary 2. Let $\Delta \subset S^{n-1}$ be an open subset. Assume that the data $u_j(x')$ contain x'' as holomorphic parameters and satisfy

$$S. S. u_j \subset \subset R_n \times \Delta dx'''.
$$

Assume that for any compact subset L of Δ, there exists $b, c > 0$ such that

$$-\text{Im } \zeta_1 \leq b |\text{Im } \zeta'''| + c |\zeta'''|$$

if $P_m(\zeta) = 0$ and $\text{Re } \zeta''' / |\text{Re } \zeta'''| \in L$. Then the Cauchy problem

$$
\begin{align*}
P(D)u &= 0 \\
\left(\frac{\partial}{\partial x_1} \right)^j u \big|_{x_1 = -0} &= u_j(x'), \quad j = 0, \ldots, m - 1
\end{align*}
$$

admits a hyperfunction solution which contains the same holomorphic parameters.

References

Seoul National University
Seoul 151-742, Korea