ON SURJECTIVITY OF m-ACCRETIVE OPERATORS IN BANACH SPACES

Song Ho Han, Myeong Hwan Kim and Jong An Park*

1. Introduction

Recently many authors [2, 3, 5, 6] proved the existence of zeros of accretive operators and estimated the range of m-accretive operators or compact perturbations of m-accretive operators more sharply. Their results could be obtained from differential equations in Banach spaces or iteration methods or Leray-Schauder degree theory.

On the other hand Kirk and Schönberg [9] used the domain invariance theorem of Deimling [3] to prove some general minimum principles for continuous accretive operators. Kirk and Schönberg [10] also obtained the range of m-accretive operators (multi-valued and without any continuity assumption) and the implications of an equivalent boundary conditions.

Their fundamental tool of proofs is based on a precise anlysis of the orbit of resolvents of *m*-accretive operator at a specified point in its domain.

In this paper we obtain a sufficient condition for *m*-accretive operators to have a zero. From this we derive Theorem 1 of Kirk and Schönberg [10] and some results of Morales [12, 13] and Torrejŏn [15]. And we further generalize Theorem 5 of Browder [1] by using Theorem 3 of Kirk and Schönberg [10].

2. Preliminaries

Let X be a Banach space and X^* be a dual banach space of X. We use B(X;r) to denote the open ball centered at $x \in X$ with radius r > 0 and ∂U to denote the boundary of a subset U of X. We also use the notation $|A| = \inf\{||x|| : x \in A\}, A \subset X$.

The duality mapping J of X into 2^{X^*} is defined by

Received February 9, 1989.

^{*} This research is supported by the Korea Ministry of Education, 1988-1989.

$$J(x) = \{ j \in X^* : (x, j) = ||x|| ||j|| = ||x||^2 \}.$$

Let T be a multivalued operator from X to 2^X . Then we define $D(T) = \{x \in X : Tx \neq \phi\}$, $R(T) = \bigcup \{Tx : x \in D(T)\}$. T is said to be accretive if for each x, $y \in D(T)$ and $u \in Tx$, $v \in Ty$, there exists $j \in J(x-y)$ such that

$$(u-v, j) \geqslant 0.$$

It follows that T is accretive [7] if for any x, y in D(T) and r>0, $||x-y|| \le |x-y+r(Tx-Ty)|$. An accretive operator T is said to be m-accretive iff R(I+rT)=X for some r>0 (hence all r>0). Thus for m-accretive T, the resolvent $(I+rT)^{-1}=J_r$, r>0 is a single-valued nonexpansive mapping which is defined on all of X.

3. Main results

In the following theorem we obtain sufficient conditions for m-accretive operator to have a zero.

Theorem 1. Let X be a Banach space such that every nonempty closed convex bounded subset of X has the fixed point property with respect to nonexpansive self-mappings. Suppose that $T: D(T) \subset X \to 2^X$ is maccretive operator satisfying: $|Tx_n| \to 0$ as $n \to \infty$ for some bounded sequence x_n in $D(T) \subset X$. Then T has a zero (i. e. $0 \in R(T)$).

Proof. For any n we can choose $y_n \in Tx_n$ such that $||y_n|| \le |Tx_n| + \frac{1}{n}$. Then $x_n + y_n \in x_n + Tx_n$. Let $z_n = x_n + y_n$. So $(I+T)^{-1}z_n = x_n = J_1z_n$. Since $\{x_n\}$ and $\{y_n\}$ are bounded, $\{z_n\}$ is bounded. Let $\limsup_{n \to \infty} ||z_n|| = M$. If we define

$$C = \{x \in X : \limsup_{n \to \infty} ||x - z_n|| \leq M\},$$

then C is a nonempty closed convex bounded subset of X. On the other hand we have

$$\begin{split} & \|J_1 x - z_n\| - \|J_1 z_n - z_n\| \leqslant \|J_1 x - J_1 z_n\| \leqslant \|x - z_n\|, \\ & \text{i. e.} \quad \|J_1 x - z_n\| \leqslant \|x - z_n\| + \|J_1 z_n - z_n\|. \end{split}$$

From $||J_1z_n-z_n||=||y_n|| \le |T(x_n)|+\frac{1}{n}$, we have $\lim_{n\to\infty}||J_1z_n-z_n||=0$. Hence C is mapped into itself by a nonexpansive mapping J_1 . From the assumptions on X the resolvent J_1 of T has a fixed point in C which is a zero of T.

For the following corollary we need the following definition. A

single-valued mapping $T: X \to X$ is said to be pseudo-contractive [9] if I-T is accretive.

Corollary 1. Suppose X is a Banach space such that every nonempty closed convex bounded subset of X has the fixed point property with respect to nonexpansive self-mappings and suppose $f: X \to X$ is a continuous pseudo-contractive mapping. If $x_n - f(x_n) \to 0$ as $n \to \infty$ for some bounded sequence $\{x_n\}$ in X, then f has a fixed point in X.

Proof. It is known that every continuous accretive operator defined on all of X is m-accretive [11]. Hence I-f is m-accretive. By applying Theorem 1 we have the conclusions.

Kirk and Schönberg [9] proved Corollary 1 with an additional assumption that X is reflexive. From Theorem 1 we also get Theorem 6 of Morales [13]. A single-valued mapping $T: X \to X$ is said to be demicontinuous if $\{x_n\}$ converges to x implies that $\{Tx_n\}$ converges weakly to Tx.

COROLLARY 2 [13]. Let X be a Banach space with uniformly convex dual X^* such that every nonempty closed convex bounded subset of X has the fixed point property with respect to nonexpansive self-mappings. Suppose $T: D(T) \subset X \to X$ is a demicontinuous accretive operator satisfying: $|Tx_n| \to 0$ as $n \to \infty$ for some bounded sequence $\{x_n\}$ in X. Then T has a zero.

Proof. Kenmochi [8] proved that in case the dual space X^* of X is uniformly convex, a single-valued demicontinuous accretive operator T with open domain D(T) is m-accretive if and only if $x_n \to x$ implies $||Tx_n|| \to \infty$ for every $x \in \partial D(T)$, $x_n \in D(T)$. Hence T is m-accretive and the conclusion of Corollary 2 can be obtained by applying Theorem 1.

We have also the following corollary [10, Theorem 1] by applying Theorem 1.

COROLLARY 3 [10]. Let X be a Banach space for which each nonempty lounded closed convex subset has the fixed point property for nonexpansive self-mappings, and let $T:D(T) \subset X \rightarrow 2^X$ be m-accretive operator. Then the following are equivalent:

(1) $0 \in R(T)$.

(2) $\liminf_{\lambda \to \infty} ||J_{\lambda}x|| < \infty$ for some $x \in X$.

Proof. Obviously $(1) \Rightarrow (2)$. Let $x \in X$ satisfying (2) and suppose $\lambda_n \in (0, \infty)$ is a sequence for which $\lambda_n \to \infty$ and $\{J_{\lambda_n} x\}$ is bounded. Since J_{λ_n} is nonexpansive for every λ_n , we have

$$||J_{\lambda_n}x-J_{\lambda_n}0|| \leq ||x||.$$

Hence $\{J_{\lambda_n}0\}$ is also bounded. Put $x_n = J_{\lambda_n}0$. Then

$$x_n + \lambda_n T x_n \ni 0$$
, i. e. $-\frac{1}{\lambda_n} x_n \in T x_n$.

Hence $|Tx_n| \leq \frac{1}{\lambda_n} ||x_n||$ and $\lim_{n\to\infty} |Tx_n| = 0$. By applying Theorem 1, the conclusion follows.

We let $[y, x]_+ = \sup\{(y, j) : j \in J(x)\}$. It can be shown that $[ax, x]_+ = a||x||^2$ for all real number a.

Corollary 4. Let X be a Banach space such that every nonempty closed convex bounded subset of X has the fixed point property with respect to nonexpansive self-mappings, let $T: D(T) \subset X \rightarrow 2^X$ be m-accretive, and

$$\liminf_{\|x\|\to\infty\atop x\in D(T)} \frac{[y,x]_+}{\|y\|^q} > -\infty, \quad q\in[1,2)$$

where $y \in Tx$. Then $0 \in R(T)$.

Proof. Suppose $\{\lambda_n\} \subset (0, \infty)$ is a sequence for which $\lambda_n \to \infty$. On the contrary we suppose that $||x_n|| = ||J_{\lambda_n}0|| \to \infty$ as $n \to \infty$. Then we can choose $y_n \in Tx_n$ such that $x_n + \lambda_n y_n = 0$. Then

$$\lim_{n \to \infty} \frac{[y_n, x_n]_+}{|y_n|^q} = \lim_{n \to \infty} -\frac{|\lambda_n|^{-1}||x_n||^2}{|\lambda_n|^{-q}||x_n||^q} = -\lim_{n \to \infty} \frac{||x_n||^{2-q}}{|\lambda_n|^{1-q}} = -\infty.$$

It is a contradiction. By applying Corollary 3 we have conclusion.

In Corollary 4 we have Corollary 1 of Morales [12] and Theorem 2.1 of [15] by replacing T by T-z. By applying Corollary 3 we have Corollary 3 of Morales [13] directly.

Corollary 5 [13]. Let X be a Banach space with uniformly convex dual X^* such that every nonempty closed convex bounded subset of X has the fixed point property with respect to nonexpansive self-mappings. Suppose $T: X \rightarrow X$ is a demicontinuous accretive operator and the set $\{x \in X: Tx = tx \text{ for some } t \leq 0\}$

is bounded. Then $0 \in R(T)$.

Proof. Since T is m-accretive and the resolvent $J_{-\frac{1}{t}}0(t<0)$ is bounded, it follows that $0 \in R(T)$ by applying Corollary 3.

In what follows We apply Theorem 3 of Kirk and schönberg [10] to the results of Browder and Morales and Kirk-Schönberg.

Theorem K-S [10]. Let X be a Banach space for which the closed unit ball has the fixed point property for nonexpansive self-mappings, let $T: D(T) \subset X \to 2^X$ be m-accretive, and suppose for some $x_0 \in D(T)$,

$$|Tx_0| < r \le \liminf_{\substack{\|x\| \to \infty \\ x \in D(T)}} |Tx|.$$

Then $B(0; r) \subset R(T)$.

We apply the above theorem to generalize Theorem 5 of Browder [1].

Theorem 2. Let X be an uniformly convex Banach space with its dual space X^* also uniformly convex and let T and T_0 be accretive with domain and range in X. Suppose that

- (a) The range of T+I is all of X. D(T) is dense in X.
- (b) To is defined and demicontinuous on all of X.
- (c) For some $x_0 \in D(T)$

$$||(T+T_0)x_0|| < r \le \liminf_{\|x\|\to\infty} ||(T+T_0)x||$$

Then $B(0; r) \subset R(T+T_0)$.

Proof. By (a) T is m-accretive and from (b) T_0 is m-accretive. By corollary of Prü β [14], we conclude that $T+T_0$ is m-accretive. By Theorem 3 of Kirk and Schönberg the conclusion holds.

COROLLARY 6. Under the same assumptions (a) and (b), except for $\lim_{\|x\|\to\infty}\|(T+T_0)x\|=\infty$

Then $R(T+T_0)=X$.

REMARK. (1) From Corollary 6 we have Theorem 5 of Browder [1] where he obtained the conclusion by assuming in addition to the above hypotheses, that T_0 maps bounded subsets of X into bounded subsets of X. His proof is base on the fact that $-(T+T_0)$ is the infinitesimal generator of a semigroup of nonexpansive mappings in the Banach space X.

(2) Instead of (b) in Theorem 2 assuming the following condition: T_0 is single-valued and demicontinuous accretive on an open domain D(T) satisfying

 $x_n \rightarrow x$ implies $||Tx_n|| \rightarrow \infty$ for every $x \in \partial D(T)$, $x_n \in D(T)$, we have the same conclusion from the results of Kenmochi

[8] and $Pr\ddot{u}\beta$ [14].

Corollary 7. Let X be a Banach space such that the closed unit ball of X has the fixed point property with respect to nonexpansive self-mappings and let $T:D(T) \subset X \to 2^X$ be m-accretive operator. Suppose for some $\delta > 0$ the set

$$K\{x \in D(T) : ||y|| < \delta \text{ for some } y \in Tx\}$$

in nonempty and bounded. Then $B(0; \delta) \subset R(T)$.

Proof. Since K is nonempty and bounded, we choose $x_0 \in K$ and $|Tx_0| < \delta \le \liminf_{\|x\| \to \infty} |Tx|$. Hence the proof follows from Theorem K-S.

We note that Corollary 1 of Morales [13] can also be obtained directly by applying Theorem K-S and Corollary 3 of Morales [12] is obtained by Corollary 7. In Corollary 3 of Morales [12] he assumed that every nonempty closed convex bounded subset of X has the fixed point property for nonexpansive self-mappings.

If $T: X \to X$ is a continuous pseudo-contractive mapping, then I-T is m-accretive. Hence from Corollary 7 we have the following corollary which implies Theorem 2 of Kirk and Schönberg [9].

Corollary 8. Let X be a Banach space for which the closed unit ball has the fixed point property for nonexpansive self-mappings, $T: X \rightarrow X$ a continuous pseudo-contractive mapping and suppose that for some $\delta > 0$ the set

$$\{x \in X : ||x - f(x)|| \leq \delta\}$$

is nonempty and bounded, then $B(0;\delta) \subset R(I-T)$ (in particular T has a fixed point in X).

Remark. The coercivity of $T(T^{-1})$ maps bounded subsets into bounded subsets [4]) implies the boundedness of the set K in Corollary 7 for any $\delta > 0$. Therefore coercivity of T implies the surjectivity of T.

References

- 1. F.E. Browder, Nonlinear equations of evolution and nonlinear accretive operators in Banach spaces, Bull. Amer. Math. Soc. 73(1967), 867-874.
- 2. M.G. Crandall and A. Pazy, On the range of accretive operators, Israel J. Math. 27(1977), 235-246.
- 3. K. Deimling, Zeros of accretive operators, Manuscripta Math., 13(1974)

365-374.

- W. E. Fitzgibbon, Weakly continuous nonlinear accretive operators in reflexive Banach spaces, Proc. Amer. Math. Soc. 41(1973), 229-235.
- 5. N. Hirano, Some surjectivity theorems for compact perturbations of accretive operators, Nonlinear Anal. TMA. 8(1984), 765-774.
- 6. A.G. Kartsatos, Mapping theorems involving compact perturbations and compact resolvents of nonlinear operators in Banach spaces, J. Math. Anal. Appl. 80(1981), 130-146.
- 7. T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan, 19(1967), 508-520.
- 8. N. Kenmochi, Accretive mappings in Banach spaces, Hiroshima Math. J. 2(1972), 163-177.
- 9. W.A. Kirk and R. Schönberg, Some results on pseudo-contractive mappings, Pacific J. Math. 71(1977), 89-100.
- 10. W. A. Kirk and R. Schönberg, Zeros of m-accretive operators in Banach spaces, Israel J. Math. 35(1980), 1-8.
- 11. R. H. Martin, A global existence theorem for autonomous differential equations in Banach space, Proc. Amer. Math. Soc. 26(1970), 307-314.
- 12. C. Morales, Nonlinear equations involving m-accretive operators, J. Math. Anal. Appl. 97(1983), 329-336.
- 13. C. Morales, Existence theorems for demicontinuous accretive operators in Banach spaces, Houston J. Math. 10(1984), 535-543.
- 14. J. Prüβ, A characterization of uniform convexity and applications to accretive operators, Hiroshima Math. J. 11(1981), 229-234.
- 15. R. Torrejon, Remarks on nonlinear functional equations, Nonlinear Anal. TMA 6(1982), 197-207.

Kangweon National University Chuncheon 200-701, Korea