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Abstract

This paper considers a single-product production and inventory management
problem where cumulative demands up to each time period are mutually independent
random variables(known) having continuous probability distributions and the
associated cost-minimizing production schedule{(when to produce and how much to
produce) need be determined in rolling hor:zon environment. For the problem, both
the production cost and the inventory holding and backlogging costs are included in
the whole system cost. The probability distributions of these costs are expressed in
terms of random demands, and utilized to e<ploit a solution procedure for a produc-
tion schedule which minimizes the expectec unit time system cost and also reduces
the probability of risk that, for the first-period of each production cycle(rolling
horizon), the cost of the “production” opticn will exceed that of the “non-produc-

tion” one. Numerical examples are presented for the solution procedure illustration.

1. Introduction each time period (partial sums of demands)

are mutually independent random

This paper analyzes a single-product variables(known) having continuous
production and inventory management probability distributions, and where capac-
prolem where cumulative demands up to ity constraints are imposed on each produc-
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tion. Backlogging is also allowed. Further-
more, both the production cost and the in-
ventory holding and backlogging costs are
included in the whole system cost. The
production cost is composed of a setup cost
for each production setup and of a linear
cost proportional to production quantity,

and the inventory holding and backlogging
costs are represented by costs linearly
proportional to inventories on hand and
backlogged, respectively. For the problem,
it is assumed that production schedules are
reviewed at each period and that the lead
time for each replenishment is zero. With
these problem specifications, a cost-minim-
izing production schedule shall be deter-
mined in rolling horizon environment.

For problems with deterministic time
-dependent demands, various solution
procedures for the first-period production
decision in ech rolling horizon have been
proposed in literature. For example, Silver
and Meal[7]

dure(known as cost effective) for selecting

have proposed a proce-

production quantities to minimize the cost
per unit time (see also Baker[2], Sung and
Park[8]). However, Wemmerlov and Why-
bark[9] have shown that the solution
procedures appeared in literature for prob-
lems with deterministic demands may not
maintain their effectiveness when applied
to those with random demands(see also De
Bodt and Van Wassenhove!5]).

For problems with random demands, a

few of research results have been reported

in literature. Silver[ 6] has suggested a three
-stage procedure of determining whether or
not to produce at the first-period of each
rolling horizon, and of specifying both the
number of demand periods to cover and the
production quantity if the first-period deci-
sion takes the production option. However
the procedure uses the expected values of
demands rather than demand distributions
themselves, so that it only incorporates the
expected demand data into a deterministic
model.

Askin{1] has additionally incoporated
the cost effects of probabilistic demands to
the problem of Silver[6]. Bookbinder and
H'ng [4] have investigated a similar prob-
lem for which the solution procedure was
designed for deterministic values trans-
formed from probabilistic demands in
terms of customer service level. Barnes,
Zinn, and Elderd [3] have analyzed a pro-
babilistic cash flow problem to character
-ize the probability of the present values of
profiles and to determine an optimal profile
which stochastically dominates other pro-
files.

The objective of this paper shall now be
stated. It is required under the rolling
horizon environment that one of the two
options between “production and non
-production” be decided for the first-per-
iod of each production cycle(rolling hori-
zon), where a production cycle is the time
interval over which all the demands are

satisfied by the first-period production. If
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enough inventory is available at the first
period, then the non-production option
may be preferable. Otherwise, the pro-
duciton option may be selected. It may
rather be more rigorous to state such
option preferences in probability measure,
since there may exist a positive probability
that the production{non-production) op-
tion may cost more than the non
-production(production) one.

Thus, the objective of this paper is to find
a production schedule in rolling horizon
environment which minimizes the expected
unit time cost, and also reduces the
probability of risk that the production op-
tion may cost more than the non-produc-
tion one. In other words, the production
schedule is determined upon a decision
strategy mixture of the risk probability and
the expected unit time system cost. The
motivation of proposing the decision
strategy mixture can further be described.

If a decision is made to setup a production
at the first peroid, then the decision may be
interpreted as representing the situation
where the expected cost incurred by taking
the non-production option is figured out to
be more expensive than the expected unit
time cost incurred by taking the production
option. By the way, due to the probabilistic
nature of the system cost, there may still
exist a risk probability that the random cost
incurred by production in the first period
may exceed that of non production. Mor-

eover, the production quantity selected only

on the basis of the expected unit time cost
may not be consistent with that determined

based on the risk probability.

2. Analysis

For the problem analysis, following

notations are introduced.

T =rolling(forecast) horizon.
C=production capacity at the first period
of each production cycle.

D, =non-negative random cumulative
demand for the time interval from period
1(the first period) through period t(t=1, 2,
e ).

f.(D)=pdf of D, (t=1, 2, ---, T).
Fu(D)=cdf of D, (t=1, 2, ---, T).

p=unit production cost at period 1.

A =production setup cost at period 1.

h, =inventory holding cost per unit on
hand at period t,(t=1, 2, ---, T).
b.=inventory backlogging cost per unit
backlogged at period t,(t=1, 2, ---, T).

w =Iinventory position at period 1.

Q =production quantity at period 1.
R=w+Q=production level as production

is setup.

Note that period t representes th t™ per-
iod from the first one (period 1) in each

production cycle.

Probability distributions of the unit time
system cost shall now be derived. Let K(R, t)

be the total system cost incurred over the
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periods from period 1 through period t
where production is setup at the first period
and the production level R amounts to all
the demands required during the interval [1,
t],(t=1,2,---,T),and K,, be the total system
cost incurred during the interval [1, t]
where production is not setup at the first
period but all the demands are taken care of
by inventory. The respective mathematical

expressions are given as follow :
KR, t)=
+b;max{0, D;—R}]
and
Kw=h;max{0, w—D;}+bmax{0, D,—w}.
Consider the variable X,
X,=h;max{0, R—D,}+bmax{0, D,—R}.
Then X’;s are mutually independent, since

D';s are mutually independent.

Therefore,

P(X,<x}=P(R— | ri <D, <R+ i}

=F/(R+ b ) Fi(R— ) for x>0,
and
R+ /by (R — )/,
a«i(xY R): !7 ngghiR,

f(R+ %)/bi, x>hR,

where a,(x, R) represents the pdf of X..
Denoting by Bi(x, R) and yx(x, R) the pdf

and cdf of Y,=2L, X, (t=1, 2,--,T), res-

pectively, both £.(x, R) and ¥i(x, R) can be

determined from a(x, R) by use of the

A+p(R—w)+ 2! [himax{0, R—D,}

Laplace transform theory. Thus, the pro-
bability of the unit time system cost incur-
red due to the production set at the level R
to satisfy all the demands over the produc-

tion cycle[1, t] can be expressed as follow:

P{K(R, t)/t<x}
=P[A+p(R-w)+ =, {hymax{0, R—Di}
+bmax{0, D,—R}} <tx]
hitx—A—p(R—-w), R),

= if meax{O,-p—‘jQ,EB"vg)—},

0, otherwise,

’

and, for x >max{0 E—_p@_\ﬂ}

Giu(x, R)= ¥a(tx—A—p(R—w),R)
g(x, R)=t-B(tx—A—p(R—w),R),

where Gi(x, R) and g.(x, R) are the cdf
and the pdf of K(R, t)/t, respectively.

The above relations imply that the pdf
and cdf of the unit time cost K(R, t)/t can
be derived from the pdf's of demands D,,
D,, -, Di(t=1, 2, ---, T). Similary, the pdf
and cdf of the non-production cost K, can
be derived from the pdf of D,.
words, the probability of the unit time

In other

system cost incurred due to the non

-production option at the first period is

given,
P{Ky<x}=
{0, D,—w} <x]

P[hymax{0, w—D,} +b;max
=P(w—q <Di=w+ b%}
1

:[ Fi(w+ bil)’ F,(w —-fli), x>0

0, otherwise
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Gu(0=Fy(w+ ) ~Fi(w— ), x20

g(X)= [ fuw g /by Hfiw— )/ i,

\ 0<x< hyw

£, (W BX—)/b,, x>hw,

where G.(x) and gx) are the cdf and the
pdf of K, respectively.

Now, teh expected unit time system cost
can be derived and then used to find the
optimal production level for a production
cycle [1, ti{t=1, 2, ---, T)

E[K(R, t)]=A+p(R—w)+Z,b(E[D,]—R)

+ 31 (hi+by) [BHR—x)f (x)dx

E[K,]=b,(E[D,]—w)+(h,+b) | % (w—x)
f,(x)dx

Let R* represent the optimal production
level at a given period t (t=1, 2, ---, T),

such that

*=arg min{E[K(R, t)/t] | w<R,<C+w}.

In fact,R*% values can be obtained from E
[K(R, t)] by solving the following equa-

tion:
S (h+b)F,(R)=3L, bi—p, for all t.

Letting R, satisfy the above equation, it
follows that, since E[K(R, t)/t] is a convex

function of R,

R% = [ Ry, if w<R,<C+w
C+w, if R>C+w.

It is noticed that if R, is not greater than
the inventory position w, then the corre-
sponding number of periods to cover (which
is t) is not justified. It would rather repre-
sent the situation that the corresponding
expected unit time cost due to the pro-
duction option is definitely greater than the

cost due to the non-production option.

3. Risk—Averse Solution

Procedure

Consider a solution procedure where the
first-period production quantity decision is
made so as to minimize the probability of
risk that the expected unit time system cost
associated with the first-period production
quantity may exceed the expected cost in-
curred due to the non-production option.
The solution procedure will be referred to,
for the rest of the paper, as a “risk-averse”
solution procedure.

Let two production levels R* and R? satis-
fy the cumulative demands for the first t and
s{t+s) periods, respectively. If it holds that
P{K(R} t)/t>x} <PIK(R?% s)/s>x}, for all x
>0, then it is said that R' stochastically
dominates R? This is interpreted as R' is
more risk-averse than R? in global sense.
Therefore, R! is preferable. If it holdsthat P
K(RLO/t>E[Ky ]} < PIK(RE 8)/s> E[Ky ),
then R! is said to be more risk-averse than
R? in local sense at the expected cost of non

-production(in the first period of each
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production cycle).

It may not be easy to find such a risk
-averse solution in global sense, since the
probability distribution of the system cost
varies with the decision variable R itself.
Thus, the local-sense risk-averse solution
at the expected cost of non-production will
be used here. On this understanding, the
decision strategy mixture measured in both
the probability of risk and the expected unit
time system cost shall now be specified.

Let Q be the set of the candidate number

of periods to cover, so that

Q={t| E[K(R*, t)/t]<E[Ky], ¥t, such
that R,>w}.

Then, the decision on whether to take the
production option or the non-production
option for the first period is made as fol-
lows :

a) If Q={¢}, then take the non-produc-
tion option.

b) If Q+{¢}, then setup a production at
the quantity R*%-w, where R¥ is determined

at the level satisfying the relation

P{K(R*, s)/s>E[Kw]}=min {P[K(R*, t)/
t>E[Kw] 1 te Q).

This decision structure indicates that the
candidate number of periods to cover and
the corresponding production quantity are
determined by considering sequentially the
expected unit time system cost and the
probability of risk as follow

a) Find all the candidate periods t such

that each corresponding expected unit time
system cost of the production option is
preferable over that of the non-production
one.

b) Then, select the best period t where the
associated R*(t=Q) gives the minimum

probability of risk.

4. Numerical Example

An illustrative example is stated as fol-
lows :

a) The planning horizon is over 5 per-
iods.

b) The random demands at each of the 5
periods have exponential distributions with
means 110, 40, 10, 62, and 12 units, re-
spectively.

¢) The production capacity is set at 300
units in each period.

d) All the cost data are given in Table 1.

Two initial inventory positions (w=90,
w =98) are considered, and their associated

solutions are shown in Tables 2 and 3.

Table 1. Problem Data

Period t 1 2 3 4 5
mean demand 110 40 10 62 12
E[Dt] 110 150 160 222 234
A=$48, p=%$1/unit,
h=$0.5/unit p=$12/unit/period

/period,
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Table 2. Summary of Solution with w=0.

¢ R, R* E[KIR%, 1)/t] P{k(R%, 1/t >E[K.]}
1 223.23 223.23 508.55 0.07

2 330.50 330.50 427.11 0.07

3 382.90 382.90 388.76 0.08

4 463.09 398.00 429.55 0.07

5 522.34 398.00 466.81 0.09
E[K.]=121550, Q={1, 2, 3, 4, 5!, R% =R* =332.90

Table 3. Summary of Solution with w=98.

f R R E[<IRY, 1/1] P{kIR%, 1/t >E[Ky]}
1 223.00 223.23 410.55 .10

2 330.50 330.50 378.11 0.11

3 382.90 382.90 356.09 0.17

4 463.09 398.00 405.05 0.27

5 522.34 398.00 447.21 0.27
E[Kw1=531.98 Q=1{1,2 3,4, 5}, RA=R%=2.323

In Table 2, R*% minimizes both the expect-
ed unit time cost and the probability of risk,
while, in Table 3, it does not minimize the
probability of risk but the expected unit
time cost. This variation is due to the initial
inventory which does not effect R*% values

but the system costs.

5. Concluding Remarks

This paper has considered, in rolling

horizon environment, a single -product

production planning model with random

demands

and exploited a soultion

procedure using two measures such as

expected unit time system cost and pro-

bability of risk. The incorporation of the

risk probability measure may get the

model practically meaningful in the real

world where random demand occurrences

are common. It follows that the model may

be preferable over any other reference

work incorporating only a single value
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information (e.q., only an expected
demand).

In the solution procedure, the two
measures are just proposed to use in-
dividually for a solution search. However,
a product measure of the two measure
outcomes may also be tried as an alterna-
tive.

For immediate applications of the model
in addition to prodcution plannings in
manufacturing industry, periodwise finan-
cing problems and maintenance service
planning problems can be suggested. The
model may be extended to the cases of
problems with partial backlogging all-
owed or problems with risk probability

measured in specific service levels.
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