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Optimal Stocking for Age-replaced Non-repairable Items
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Abstract

Joint stocking and preventive age replacement policy is considered for non

-repairable items assuming instantaneous replenishment. A recursive relationship

among the optimal preventive replacement ages is obtained, which shows that the

preventive replacement ages in a replenishinent cycle form an increasing sequence

due to the inventory carrying cost. Using this relationship, a procedure is given for

determining how many units to purchase on each order and when to replace each unit

after it has begun operating so as to minimize the total cost per unit time over an

infinite time span. The problem can be simplified if equal preventive replacement

ages are assumed, and the solution is very close to that of the original unconstrained

problem.

1. Introduction

Maintenance policies for systems that are
subject to stochastic failures have been
treated extensively in the literature[7, 14,
16]. But most of the published research
results have assumed that each time a unit

is to be replaced, a new unit must be pur-

chased and thus a procurement cost is incur-
red in every replacement. Procurement cost
includes the cost of placing an order, buy-
ing, delivering, and receiving.

In many situations planned preventive
replacement is more economical than un-
planned corrective replacement resulting

from the failure of a unit during operation.
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As is usually the case, if the unit’s failure
chance increases with the time used, plan-
ned preventive replacement is warranted
after some period of use.

In a preventive age replacement policy
discussed by Barlow and Proschan|l}, a
unit is to be replaced by a new one if it has
survived a certain age T(preventive
replacement) or it has failed(corrective
replacement), whichever occurs first. The
planned preventive replacement age T is
the only decision variable to be deter-
mined.

Instead of one for one ordering, consider
the case(such as the provisioning of a non
-repairable vital part) where more than
one unit can be purchased at a given time.
This might be desirable because of (i) fixed
ordering cost which is independent of the
quantity ordered, and (ii) an economy of
scale obtained by ordering in
batches(quantity discounts). Thus for the
economical implementation of main-
tenance policies, we must determine when
to place orders, how many units to pur-
chase on each order and when to replace
each unit after it has begun operating. This
problem has similar atrributes as clas-
sical inventory problems and classical
equipment replacement problems. The
determination of when and how much to
order is an inventory problem, but the
difference is that the requirement function
is controlled by the choice of replacement

ages. On the other hand, the determmation

of when to replace is an equipment re-
placement problem, but the decision is
made under consideration of procurement
and holding costs of spare units. A typical
example of such a joint system of stocking
and replacement is a maintenance depart-
ment of a production plant or a factory, or
a material supply depot in a military logist-
ic system.

Several studies for such a problem have
been done, but for the most part the inven-
tory is limited to only a single spart unit[8,
10,11, 12,13, 18, 19]. Exceptionally, Falkner
2, 3] have treated joint stocking and
replacement problems without limitation
on the stocking level of spare units, but in
his studies the procurement of spare units is
allowed once only at the beginning of plan-
ning horizon.

In this paper we examine joint stocking
and preventive age replacement policy
without any restriction on stocking level
and procurement time. Assuming an increa-
sing failure rate(IFR) and instantaneous
replenishment, we show that there exists a
unique set of solutions for the joint stocking
and preventive age replacement policy over
an infinite time span, and present a proce-
dure for determining order quantity per
order and preventive replacement ages for

the units.

List of Notations

The following notations are used throu-
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ghout the paper:

F(t): the probability density function of

time to failure of a unit.

f(t):the cumulative distribution function of

time to failure of a unit.

F(t): 1-F(t), (the survivor function).

h(t): f(t)/F(t), (failure rate at age t).

¢;: the expected cost of a corrective re-

placement; this includes the purcha
sing price of replacing time.

¢p: the expected cost of a preventive rep-

lacement; this includes the purchasing
price of replacing item{c,<c;).

ch: the inventory carrying cost per item per

unit time,

Co. the fixed ordering cost.

Q: the order quantity per order.

Q*: the optimal value of Q.

T(Q): the preventive replacement age for
the i-th unit from the last[with (i-1)
spares in inventory] for a given
order quantity Q.

T*(Q): the optimal value of Ti(Q) for a

given order quantity Q.

CQ, T(Q)): the expected cost per unit time
when order quantity is Q and
sequence of preventive repla
cement ages is T(Q)={T, (Q}
={T@Q). To 1(Q);-T1Q)}.

C*Q): CQ, T*(Q)), (the optimum cost per
unit time for a given order quantity
Q).

C*(Q*): min C(Q, T*Q)), (the global opti-

mum cost per unit time).

2. The Model

Under the joint stocking and preventive
age replacement policy proposed in this
paper, Q units are purchased per order, and
the i-th unit from the last [ with (i-1) spares]
is replaced at failure or at age T,(Q), whch-
ever occurs first. It is assumed that the
replenishment is instantaneous and the fail-
ure rate is increasing. An age-based pre-
ventive replacement policy is meaningless
for a decreasing failure rate. The time
between successive orders is a cycle and the
behavior in each cycle repeats. Thus, the
axpected cost per unit time for an infinite
time span is the expected cost per cycle
divided by the expected cycle length[15].

The expected cost per cycle is the sum of
the ordering, replacement(corrective and
preventive), and holding costs. The orde-
ring cost per cycle is ¢,. The expected cost
of preventive and corrective replacement

per cycle is
S5 [eF(THQ)+ e F(THQ)]
=32, [eot(er—co)F(T(Q))].

Since the expected use time of the i-th unit

from the last is

o

J’zi(Q) ti(t)dt+T,(Q) JNQ) f(t)dt
:I?(Q) F(t)dt,

. Q (TH®
1 3oy 0

F(t)dt, and the expected holding cost

the expected cycle length
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per cycleis 3%, c,(i-1) 349 Ft)dt.
Hence, the expected cost per unit time is

Cot [t (c

— ) F(T O+ (- D5 Ftydt]

CQ TQ) =

The problem is to select order quantity Q
and preventive replacement ages T(Q)=
{To(Q), To- Q)+~ T(
CQ, TQ).

Q)} so as to minimize

2.1 Determination of Preventive Re-

placement Ages

To find the optimal preventive repla-
cement ages for a given Q, we set the partial
derivatives of Equation(l) with respect to

Ti(Q) equal to zero, obtaining

(cr—cp)h{TH Q) +en(i—-1D)=CQ,TQ))
for i=1,2,-+-,Q. +ereererreeemrainiiiniaiini, (2)

From Equation(2), we obtain the follow-
ing recursive relationships among the

optimal preventive replacement ages:

h(T*, . (Q)=h(T*(Q))—cn/(cr—cp)
for i=1,2,- Q T, ceeveornnrcrinanicaniatanns (3)

Notice that T*,.(Q)< T%(Q) due to the in-
ventory carrying cost ¢, and thus the pre-

T *Q*] (Q)7
T*(Q)) form an increasing sequence.
Multiplying [T@ F(t)dt to both sides of

ventive replacement ages { T%(Q),

Equation(2) and summing over all i, we

obtain

SL [T Fodt

5 & VY POt e ep)h(THQ)Henli—1) ]
=[=2, I YR CQ, THQ)
=Co+ R+, (cr—c)F(THQ)
+39 cli—1) [ F(odt
or
s, [R(THQ) [ Ftydt— F(THQ))]
=(co+cpQ)/(Cr—Co).

From Equation(3), we obtain

h(T%(Q)=h(T(Q)—cn/(ci—¢p),
h(T%(Q)=h(T%(Q))—cn/(ci—cp),

h(T*(Q)=h(T*-(Q)—cn/(Ci—Cp).
Adding these equations yields

h(T%(Q)=h(T*%(@Q)—(i—Den/(c:—Cp)
or

I*(Q=h""[h(TH(Q)—(i—1)cn/(ci—Co)].

Substituting Equation(5) into Equa-
tion(4), we can determine T*(Q). Once T*
(Q) is obtained, we can determine T*(Q)
using Equation(5). From Equation(2) the

optimum cost is
CHQ)=(ci—co)h(TH(Q)).

Thus the optimal set of solutions satisfies

Equations(4) and (5), and the corresponding
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cost is given by Equation(6).

Remark: If h(-) is strictly increasing, the
left hand side of Equation(4) is also strictly
increasing in T*(Q) starting from zero.
Thus there exists a unique set of solutions
T*Q)(possibly infinite, that is, never to
perform preventive replacement) satisfying
Equations(4) and (5). Furthermore, the set of
solutions T*(Q) must yield C*(Q) for a given
Q, since the Hessian matrix evaluated at the
critical point is positive definite with posi-
tive diagonal elements (cic,)[f(T*(Q))+
THQ)HTHQ)]/EL, T'® F(t)dt. Notice
that, since h'(t)= [ "(t)+h(t)f(t)] /F(t), IFR
implies [f'(t)+h(t)i(t)] >0 for all t.

2.2 Determination of Order Quantity

The following theorem shows that C*(Q)

is integer quasi-convex in Q[6].

If h(t) is increasing in t, there
exists Q*>1 such that

Theorem 1.

C*)=C*2) = - =2C*QH)=<C*Q*+ D)< -

Proof: See Appendix Al.

Hence, one for one ordering is never
optimal if C*(1)>C*(2). In order to find the
condition that stocking is required, we now
examine when C*(1)>C*(2).

Cot Q-+ (c;—cp)QF(T Q)1+ ¢,

CQ TQ)=

Theorem 2. If h(t) is strictly increasing in

t, then C*(1)> C*(2) is satisfied if and only if

h(To) [o" F)dt—F(To)>co/(ci—cp),

where To=h"'[h(T*(1))—cn/(ci—Cp)].

Proof: See Appendix A2.

Thus if T%(1) (preventive replacement
age for the Barlow and Proschan model[1])
is known, it can be decided wether stocking
is required or not. If stocking is required, we
can determine the optimum stocking level,
since Q* is the smallest positive integer Q

which satisifies

CrQ+1)-C*Q =0

from Theorem 1.

3. Equal Preventive Replacement

Age Case

If we assume that preventive replacement
ages are equal, the problem is simplified.
Suppose that T;(Q)=T(Q) for all i. Then
Equations(1) and (4) degenerate to

QQ-1) [ 3@ F(tdt/2

and  hT*Q) [, Ft)dt—F(T

I Q) ‘ t)dt
*(Q)) =(Co ‘Q+Cp)/(CrmCp). #werrrrremremmsrereaneuarennn, (8)
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Substituting the T*(Q) satisfying Equati-

on(8) into Equation(7), we obtain

CHQ=(c—co(T*Q)+cn(@Q-1)/2. (9)

4. Exponential Lifetime Case

Let us consider the case of exponential
lifetime distribution, in which the failure
rate is a constant.

Lemma. If h(t) is a constant A, T*(Q) is
either 0 or co for alli=1.2,--,Q.

Proof: See Appendix A3.

From the above Lemma, we have the
following theorem,

Theorem 3. If h(t) is a constant A, T*(Q*)
isco for all i=1,2,---,Q*.

Proof: The proof is trivial from the Lem-
ma, since T*%(Q*)=0 means that the unit is
condemned without any use and thus C*(Q*)
>C*(Q*-1) (This contradicts that Q* is the
optimal order quantity).

Thus, in the case of exponential lifetime,
preventive replacement is unnecessary and
each unit should be replaced only at failure.

Corollary. If h(t) is a constant A, then the
optimal order quantity Q* is the smallest
positive integer Q which satisfies Q(Q+1) >
2A¢/Ch.

Proof: From Equation(l), C(Q, {col)=
Ac/Q+ Ac;+¢,(Q-1)/2. Since C(Q, {oc}) is
convex in Q, Q* is the smallest positive
integer Q which satisfies C(Q+1, {0co})
-C(Q, {00}})=0 or QIQ+1)=2Ac¢y/ch.

The result coincides with the ordinary
inventory system of Sivazlian[17], and the
optimal order quantity Q* is approxima-
tely equal to Wilson's lot size formula
v 2dco/ch.

5. Numerical Example and

Comparative Cost Behavior

Consider a unit having a Weibull lifetime
distribution F(t)= 1-exp(-2t?). Suppose that
co="5810, ¢;=$%$50, c,=—$10 and ¢,=$8. From
Equation(5), T*(Q)=T*(Q)-(i-1)/20. Sub-
stituting T*(Q) into Equation(4), we de-
termine T*(Q) numerically and, from Eg-
uation(6), we obtain C*(1)=$83.75, C*(2)=
$75.12, C*(3)=$75.04 and C*(4)=876.25. Sin-
ce C*2)>C*(3) and C*(3)<C*(4), the op-
timal order quantity Q*=3. The optimal
preventive replacement ages are T*%(3)=0.
369, T%(3)=0.419, T*(3)=0.469 and the op-
timum cost is C*(3)=$75.04.

Likewise, in equal preventive repla-
cement age case from Equations(8) and (9),
Q*=3, T*(3)=0.420 and the optimum cost
is $75.20.

Since the optimal order quantity Q* is
determined by a trade-off between the
fixed ordering cost ¢, and the inventory
carrying cost ¢y, the expected cost per unit
time is computed numerically and plotted
as a continuous function of c¢,/c. as ¢,

varies. Fig. 1 shows the respective costs of
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Fig. 1 Comparative cost behavior.

the three models (C*%: Barlow and Prosch-

an’s, C*%: equal preventive replacement age

case, C*: unequal preventive replacement
age case). As might be expected, if ¢,=0
the costs of the three models are equal. As
the ratio c¢,/c, increases, cost reduction
due to quantity purchase, C*%-C*% or
C*-C*, increases. However, the difference
between C*; and C* is very little regardless
of the ratio ¢,/c.

In order to see the relative inefficiency of
equal replacement ages over unequal repla-
cement ages, 16 example problems are
solved and summarized in Table 1 for all
the combinations of parameter values half

and twice as much as the original para-

Table 1. Comparative cost (Unequal replacement ages vs. equal replacement ages)

Cost data (9$)

Expected cost ($)

Relative inefficiency

No. <, C¢ c c C* (C*-C*)/C*
p h E
1 25 5 4 37.60 37.52 0.0021
2 20 25 S 4 47.45 47.19 0.0055
3 100 5 4 75.25 75.22 0.0005
4 25 20 4 45.91) 45.88 0.0004
5 5 25 5 16 41.83 41.88 0.0000
6 20 100 4 89.7) 89.06 0.0072
7 20 25 20 4 53.87 53.86 0.0002
8 20 25 5 16 60.27 60.00 0.0045
9 5 100 20 4 125.00 124.63 0.0030
10 100 S 16 83.7) 83.13 0.0069
1 5 25 20 16 47.8" 47.81 0.0000
12 20 100 20 4 135.1) 135.00 0.0014
13 20 100 5 16 111.09 109.84 0.0106
14 20 25 20 16 63.86 63.83 0.0005
15 5 100 20 16 130.00) 130.00 0.0000
16 20 100 20 16 150.40 150.08 0.0021




82 FhkE

- FR SRR

meters. The results show that the maximum
relative inefficiency is about 1%. It may be
satisfactory to use equal preventive repla-

cement age model in practice.

6. Concluding Remarks: Optimal
Stocking with Lead Time

In this paper, a procedure is presented for
determining order quantity and preventive
replacement ages in a joint stocking and
replacement problem. Since the formula-
tion assumes that the replenishment is
instantaneous, a reorder is placed as soon
as a stockout occurs, and idletime(no unit in
use) does not exists.

If the procurement lead time is not neg-
ligible, we must determine the reorder point
as well as order quantity and preventive
replacement ages. In this case, since the
cycle length depends on the age of the unit in
use when delivery takes place, the problem
is not tractable for a general lifetime distri-
bution.

In the case of exponential lifetime, howe-
ver, the problem simplifies to that of de-
termining order quantity and reorder point,
since preventive replacement is unnecessa-
ry. The “memoryless” property of the
exponential distribution enables us to start
the process anew when delivery takes place,
regardless of the age of the unit in use.

Consider the case with exponential life-

time and lead time distributions with means
1/A and 1/, respectively. Then, the expec-

ted cost per unit time is, from Appendix A4,

CQ, 1)= co+cQ(Q—1)/22+1/2—1/pu+
AT/ A+ p) T+ Cs A/ (A4 p)”
Q/A+ A"/ (A +pu)f

where r is the reorder point and ¢, is the
idleness cost per unit time. Since having the
unit inoperative is a significant cost factor,
it might be assumed that the length of sto-
ckout period(17/u(A+ )" is small enough
to be neglected compared to the length of
the operating period(Q/2) as in Hadley and
Whitin[4]. Then, the expected cost in Equa-

tion(10) approximates to

A,

CQ, =2ce/Q+chA[(Q—1)/22+
t/A—1/p+ A A+ )]
+ AT /Qu(A + ).

To find the optimal pair (Q*, r*), an iterati-
ve procedure as in Hadley and Whitin[4]
can be used. Since C(Q, r) is convex, the
solution(Q*, r*) obtained from the iterative

procedure yields an absolute minimum.
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Appendices
Al. Proof of Theorem 1

Since the optimal set of solutions satisfies
Equations(4) and (5), T*(Q) is the solution of

5%, [T f; Ftydt—F(T)]
= (C0+CPQ)/(Cf_Cp),

where all T(; 1<i<Q) are related to T, by
T, =h[h(T))—(G—Decn/{ci—Cp)]. -+ (A2)

Denote the left hand side and the right hand
side of Equation(Al) by g(Q, T,) and f(Q),

respectively. Define

AglQ TH=8Q+1, T,)—g(Q, T,)

and
A HQ)=f(Q+1)—f(Q).

We first show that g(Q, T,) and f(Q) satis-
fy the following three conditions in the

Lemma 2 of Nguyen and Murthy[9]:

Cl: g(Q, T)) is increasing in T},
C2: ~ g(Q, T)) is decreasing in Q,
C3: A {(Q) is a constant.

Condition C1 is shown to be satisfied by
noting that as T, increases, T (;1<i<Q)
also increase and hence g(Q, T,) is in-
creasing in T,. Condition C?2 is satisfied,

since

2 gQ T)=h(Ten) [ Ft)dt—F(Tqs,)

and
T <T, foralli,

which imply that as Q increases, Tq.,
decreases and thus A g(Q, T,) decreases.
Condition C3 is also satisfied, since
A fQ)=c,/(ci-¢p).

Hence from the Lemma 2 of Nguyen
and Murthy[9], there exists Q*>=1 such

that
T*1(1)2T*1(2)2 ZTl(Q**
>THQH<THQ*+1)<

which implies, from Equation(6),

C*DH=C*2) =z =2C*Q*-D=
<CHQ*+1D) <

Q"

A2. Proof of Theorem 2

Suppose that C*(1)>C*(2

strictly increasing int, h(t) | § F(

). Since ht) is
x)dx-F(t) is
also strictly increasing in t. From Equati-
on(4),
ce/(ci—cp) =22, [h(T*(2)) ITQ‘) F(t)dt—
F(T%(2)]
—[h(T%@) [, Fo)dt—F(T*1)].

Since C*(1)>C*(2) implies, from Equa-
tion(6), T*(1)>T*(2),

co/(ci— o)< S, [h(T%(2)) [ F(bdt
—F(T*(2))]
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T2

~[(Tx@) [,

or

F(t)dt—F(T*(2))]

co/(cr—,) <h(T%(2) [, Flt)dt—F(T%(2),

where T*%(2)=h"'[h(T*(2))-cn/(c;-¢p)] from
Equation(b).

Since T, is defined as h™'[h(T*(1))-c./
{ce-¢p)] and TH(1)>TH*(2), To>T%(2) and
thus

co/(cr—cp)<h(T,) 1" F(t)dt—F(T,).

Similarly, we can prove the contra-
position of the sufficiency: if C*(1)<C*(2),

then the opposite is true.

A3. Proof of Lemma

Since f(t)= AF(t) and [} F(x)dx =F(t)/2,
differentiating Equation(l) with respect to
TWQ) yields

oC(Q, T(Q)/aT(Q)
= A’F(’I‘x(Q)) [_/1 (Co*’CpQ)+Ch J‘ 1 (i—1J)

F(T/(Q) —cu £ .y G—DF(T,(Q)] /
(S, F(T,Q))*

Since the sign of aC(Q, T(Q)/3T.(Q) is
independent of Ti(Q), T*(Q)=0 when the
derivative is positive, and T*(Q)=co when
the derivative is negative. If the derivative
is zero, all values of T{(Q) give the same
cost, and both 0 and < are as good as any.

Thus, and optimal T*(Q) is either 0 or cc.

A4, Derivation of C(Q,r)
in Eqation(10)

Suppose that the lead time is a constant «.
From the equations(60) and (62) of Karlin
[5], after some notational changes (T — Q,
R — r, h — ¢,), the expected holding cost
per cycle is

KaQ, 1. a)=c, QUQ—-1)/2A+(r/1)

b o(k)—a 275 o(k),

and the expected cycle length is

TQ, 1, a)=a+Q/A—(r/1) £%=r @(k)
—a zk 0 (P(k),

where

@ (k)=(1a)* exp{—2Aa)/k!.
Karlin[5] also presented the relevant
probability quantities for computing C(Q, r)
when the lead time is a random variable
but his

results contain some errors. Correct deri-

with density g(x)=puexp(-ux),

vation follows.
If the lead time distribution g(x)=
rexp(-ux), the expected holding cost per

cycle is

K.(Qn=[7 K@, 1, x) glx)dx
=nQUAQ~1)/22 4+ (ru/A?)
/AR (/A
ST DA/ 0]
=c QUQ—1)/2A+r/A— 1/ u+ A7/
ulAd +u)],
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and the expected cycle length is Since the expected idletime percycle is 17/

T@Q 1= [ TQ 1, %) gx)dx u(d +,f1)r[o], the expected total cost per
cycle is
=1/u+Q/A—(ru/A?
= A4 ) (/22 K(Q. r)=co+cnQl(Q—1)/24+
2 (kb DA /(A + o) o2 r/A=1/u+ A7/ u{A 4+ u)"] +cA”/
=Q/A+ A"/ (A + )" (A4 ).
C@Qr) K@Q, r) Co+CnQUQ—1)/2A +1/A —1/u+ A"/ A+ ) T+ AT/ (A + )"
,JI)—= =
TQ, r)

Q/A+ AT/ p(A+p)’



