A Successful Replacement of Ascending Aorta and Aortic Valve With a composite Graft

Kyung Soo Cho, M.D.*, Won Gon Kim, M.D.*, Kyu Seok Cho, M.D.*, Joo Chul Park, M.D.* and Seh Young Yoo, M.D.*

Abstract

A forty-eight-year-old female patient with ascending aortic aneurysm with aortic insufficiency underwent a modified Bentall operation.

The ascending aorta and the aortic valve were replaced with a composite graft containing a St. Jude valve.

The coronary orifices were anastomosed to the tubular, Dacron prosthesis by means of a second smaller Gore-tex tube, and a fistula between the aneurysmal sac and the right atrial appendage was created to drain oozing from the prosthesis.

The postoperative course was uneventful and the patient was discharged without complication.

She is doing well on the 14 months follow-up.
Introduction

Although great progress has been made in the surgical management of ascending aortic aneurysm with aortic insufficiency, the ascending aorta is still challenging, and questions remain as to the best mode of operation.

Total replacement of the ascending aorta with reimplantation of the coronary arteries expands the possibilities for definitive surgical treatment of ascending aortic aneurysms with associated aortic insufficiency.

Bentall H H, et al\(^2\)) reported the first use of a tubular Teflon graft sutured to a valve prosthesis as one unit for the replacement of the ascending aorta and aortic valve.

This technique however, with all of it's advantages, carries a certain risk of bleeding at the level of the suture line for reimplantation of the coronary arteries, difficult to anastomosis, and excessive traction of anastomosis site.

To eliminate these risks, Cabrol reported\(^3\sim5\)), avarient of the technique utilizing a Cacron tube connecting the coronary orifices to the composite graft.

An ascending aortic aneurysm with aortic insufficiency treated successfully by a modified Bentall's operation is described, and problems of the related surgical procedures are discussed with a review of the literature.

Case of Report

A 48-year-old female patient was admitted to this hospital on April 27, 1988, for the evaluation of exertional dyspnea and radiating pain on the left shoulder and the left upper extremity.

She had neither evidence of Marfan's syndrome, nor the past medical history related to syphilis or chest trauma.

Blood pressure was 200/80 mmHg with heart rate of 102 beats per minute with irregular rhythm.

Respiratory rate was 20/min.

A decrescendo diastolic murmur was heard in the right sternal border.

The electrocardiogram revealed ST depression, T wave inversion in II, III, aVF, V4, 5, 6, and atrial fibrillation.

Chest roentgenogram demonstrated remarkable cardiomegaly and a small amount of pleural effusion on the right lung field(Fig. 1).

An echocardiogram revealed an aneurysm on the proximal ascending aorta, left ventricular enlargement and severe aortic regurgitation(Fig. 2).

Fig. 1. Roentgenogram of chest at admission.

Fig. 2. Preoperative angiogram of the ascending aortic aneurysm.
Fig. 3. Preoperative echocardiogram.

The aortogram confirmed the presence of ascending aortic aneurysm with grade IV aortic regurgitation, showing no definitive intimal flap (Fig. 3).

After systemic heparinization, extracorporeal circulation was established via femoral a. and vena cavae.

The aorta was cross-clamped just below the brachiocephalic arteries.

The aneurysm was opened longitudinally and the edges were suspended by traction sutures on either side.

There was marked fusiform dilatation of the sinuses of Valsalva as well as the aortic annulus with upward displacement of coronary ostia in the operative field. Myocardial protection was continued by pericardial ice water irrigation and intermittent infusion of cardio-plegic solution directly into both coronary ostia.

After the examination of the lesions of the aortic wall and the aortic valve, the latter was excised.

A 30 mm Dacron composite graft containing a 27 mm St. Jude valve was chosen, and precollotted with a waiting donor’s fresh blood which was drawn immediately after choosing the prosthesis.

The end bearing the St. Jude valve was sutured to the aortic annulus with interrupted mattress sutures of 3.0 prolene with pledgets.

The two coronary ostia were then anastomosed to the ends of an intermediary tube, Gore-tex, 8 mm in diameter.

The connection to the left coronary ostium was established initially and the intermediary tube was led circumferentially around the right flank of the aortic prosthesis anteriorly to where it was anastomosed to the right coronary ostium.

The distal end of the aortic posthesis was sewn to the inferior of the aneurysmal sac just below the origin of the brachiocephalic trunk with interrupted mattress sutures of 2.0 prolene with pledgets.

The aortic clamp was temporarily released and complete hemostasis of the suture line was confirmed.

The aorta was then reclamped and coronary tube was connected to the aortic tube with a side to side anastomosis (Fig. 4).

The periprosthetic space was drained into the right atrium, creating about 1 cm fistula between the space and the right atrial appendage (Fig. 5).

The postoperative course was uneventful and postoperative hemodynamic data were within normal ranges.

She was discharged with no complications. Four-
of the aneurysm by aneurysmorrhaphy, with hope that reduction in aortic size would ameliorate the aortic regurgitation. Muller and associates reported successful aneurysmorrhaphy combined with a direct plastic repair of the aortic valve.

However, Merendino's group reported disastrous results with this approach, especially in patients with Marfan's syndrome.

Ferlic et al. reported a partial circumferential or cuneiform resection of the ascending aorta followed by direct anastomosis with a woven prosthetic graft carried a relatively high mortality because of tearing of fragile aortic wall with resultant rupture or acute dissection.

In 1964, Wheat, et al. reported the resection of the ascending aorta leaving the sinuses of Valsalva in place and utilizing a Dacron prosthesis for reestablishment of continuity.

This is a logical technique if the sinuses of Valsalva are uninvolved.

But, if the failure to excise the sinuses of Valsalva, the residual tissue is weak and the anastomosis is fragile.

At long term, the aneurysmal zone is subject to compression, dissection, and rupture.

In 1968, Bentall and De Bono reported the use of a composite graft as one unit for the replacement of the ascending aorta and aortic valve.

But, the delicate portion of his technique is the reimplantation of the coronary orifices on the prosthetic aortic tube.

The suturing is difficult because of imperfect visibility, fragile aortic tissue, traction on the aortic wall at the level of the reimplanted ostia and becomes the source of hemorrhage, which is difficult to control because of inaccessibility.

These same mechanisms have been blamed for the occurrence of false aneurysms demonstrated later at the zone of reimplantation.

In order to avoid these complications, Cabrol and associates, lead to employ an intermediate Dacron tube, construct an easy anastomosis without tension and with satisfactory hemostasis and

---

Discussion

Over the years, various methods of dealing with the still formidable problem of aortic insufficiency associated with ascending aortic aneurysms have been described.

Initial efforts were aimed at preventing rupture
the large width of the side to side anastomosis between the two prosthetic tubes provides what amounts of a separate insertion of the two coronary orifices and thereby avoids the late risk of a single coronary ostium.

We experienced one case of ascending aortic aneurysm with aortic insufficiency who was treated successfully by a modified Bentall operation.

This technique provided very satisfactory early result.

REFERENCES