Construction of *Rhizobium- E. coli* Shuttle Vector Using Replication and Mobilization Function of Indigenous Multicopy Plasmid from *Rhizobium* Cho Moo Je¹, Pyung Gyun Shin², Young Ju Choe², Kyu Young Kang² and Han Dae Yun² Department of Biochemistry¹ and Agricultural Chemistry², Gyeongsang National University, Chinju 660-701, Korea # Rhizobium Muliticopy plasmid 의 복제 및 이주 기능을 이용한 Rhizobium-E. coli Shuttle Vector 구축 조무제¹ • 신평균² • 최영주² • 강규영² • 윤한대² 경상대학교 자연과학대학 생화학과', 동과대학 동화학과 2 ABSTRACT: The vector, pGUR19, for *Rhizobium* gene manipulation, was constructed by combining the replication and mobilization function of indigenous multicopy plasmid from *Acacia (Robinia pseudoacacia L.) Rhizobia* sp86 with *E. coli* cloning vehicle, pBR322. The vector could be efficiently mobilized by RP4 tra function incorporated into chromosome of *E. coli* named SM10 and efficiently transferred to various gram negative hosts including *Rhizobium* and *Agrobacterium* by transformation. Mobilization frequency of the constructed vector was ranged from 1.2×10^{-2} (*E. coli* HB 101) to 4.6×10^{-4} (*A. tumefaciens* 15955) and transformation frequency was ranged from 5.4×10^{-7} (*E. coli* HB101) to 1.2×10^{-10} (*A. tumefaciens* 15955). The vector, pGUR19, was stably replicated and maintained in a variety of *Rhizobium* and *Agrobacterium*. KEY WORDS Rhizobium, Shuttle vector, Acacia Rhizobia sp86, pBR322, Broad host range vector Construction of genetically engineered effective *Rhizobium* has been attempted because of the economic importance, nitrogen fixation, of the genus, but the attempts have not been succeeded for moment mainly due to lack of suitable vectors for *Rhizobium* gene manipulation. The cloning vehicles useful in a variety of *Rhizobiaceas* family require not only broad host range replication origin but also their efficient conjugative transfer function. There are natural plasmids such as *IncP* plasmid RK2 (Ditta *et al.*, 1985; 1980), *IncW* plasmid pSa (Leemans *et al.*, 1982; Tait *et al.*, 1983), and *IncQ* plasmid RSF1010 (Bagdasarian *et al.*, 1981; Bagdasarian & Timmis, 1982; Nagahari & Sakaguchi, 1987; Priefer et al., 1985; Scherzinger et al., 1984), which are useful in Rhizobium as well as a wide variety of gram negative bacteria. But many of them were not completely satisfactory for the purpose of Rhizobium gene manipulation, because of molecular weight, versatility of cloning sites and stability of the vectors in Rhizobium hosts that we are interested in. In this paper, we have constructed pGUR19 vector which comined the replication and mobilization function of indigenous multicopy plasmid from Acacia Rhizobia sp86 and E. coli vector pBR322. In addition, the mobilization and transformation characteristics and stability of the constructed vector pGUR19 in different hosts were examined. #### MATERIALS AND METHODS #### Bacterial strains and plasmids The bacterial strains and plasmids used in this experiment are listed in Table 1. #### Media E. coli Rhizobium and Agrobacterium were grown in L-broth (tryptone, 1%; yeast extract, 0.5%; NaCl, 0.5%; and glucose, 0.2%), AMA (mannitol, 1%; yeast extract, 0.1%; MgSO₄.7H₂O, 0.02%; K₂HPO₄, 0.05%; and FeCl₃, 4.88 mg/l) and TY-medium (tryptone, 1%; yeast extract, 0.5%; and CaCl₂ 0.09%), respectively. For the conjugation and transformation of Rhizobium and Agrobacterium, LY-medium (yeast extract, 0.5%; tryptone, 1%; NaCl, 0.5%; CaCl₂, 0.09%; and glucose, 0.2%) was used. Antibiotics were used at the following concentration unless otherwise indicated: streptomycin (Sm), 150 μg/ml; ampicillin (Ap), 100 μg/ml; tetracycline (Tc), 10 μg/ml. #### **Transformation** Transformation of *E. coli* was performed by the procedure described by Morrison (1977) and *Rhizobium* and *Agrobacterium* were transformed by the so called freeze-thaw method described by Selvaraj et al. (1981). ### Conjugation Conjugation of the bacteria on the membrane filter was followed by the procedure described by Berry and Atherly (1984). About 10^9 cells, each of the donor and recipient, were mixed and filtered the suspension onto $0.45~\mu m$ Millipore filters. The filters were incubated at $30^{\circ}\mathrm{C}$ on nonselective agar plates for 3-6 hours before the cells were resuspended and plated on selective medium. # Isolation of plasmids Plasmids from *E. coli* were isolated from lysozyme and SDS lysed cells and purified by ultracentrifugation with CsCl-ethidium bromide (=1.58 g/cm³). The rapid detection of plasmid pattern in *E. coli* was followed by the alkali lysis method (Maniatis *et al.*, 1982), and the procedure described by Kado and Liu (1981) were adapted for the detection of plasmid in *Rhizobium* and *Agrobacterium*. # Restriction endonuclease digestion and ligation All the other restriction enzyme digestions were carried out under the condition of the supplier's instruction (New England BioLabs). The ligation was carried out in ligation buffer (50 mM Tris-HCl, Table 1. Bacterial strains and plasmids. | Strain or plasmid | Relevant genotype or phenotype | Source | |----------------------|---|-----------------| | E. coli | | | | SM10 | Rec- derivative of C600 with RP4-2Tc::Mu | 19 | | | integrated in the chromosome | | | S17.1 | Rec- derivative of 294 with RP4-Tc::Mu | 19 | | | Km::Tn7 in the chromosome | | | HB101 | pro Leu Thi lacY Smr end A rec A hsrR hsrM | 5 | | R. meliloti 102F51 | Wild type Nod + Nif + Sm ^r | Nitragine, USA | | R. fredii USDA193 | Wild type Nod + Nif + on "Peking cultivar"; | H. Keyser, USDA | | | Nod + Nif- on North American cultivars | | | R. leguminosarum 897 | Phe Trp Sm ^r | 10 | | A. tumefaciens 15955 | Octopine-type wild type | 22 | | Plasmids | | | | pBR322 | Ar^r , Tc^r | 4 | | pRK290 | Tc^{r} | 8 | | RP4 | Ap^r , Tc^r , Km^r | 7 | | pASR186 | | This experiment | pH 8.0, 10 mM MgCl₂, 10 mM ATP, 40 mM dithiothreitol) using 1 μ g of restriction endonuclease digested plasmid DNA and 2 to 4 units of T₄-DNA ligase. The reaction mixture was incubated at 16°C for 16 hours for ligation (Maniatis *et al.*, 1982). # Estimation of plasmid stability Stability of the constructed plasmid vector was determined by the procedure described by Priefer et al. (1985). The single colony harboring the plasmid was inoculated into liquid media in the absence of antibiotics. Immediately after inoculation, bacteria was counted on non-selective medium. After culturing until the end of log phase, the culture was transferred to fresh new non-selective medium to continue the non-selective growth or plated onto non-selective agar plates. In each case, 100 colonies were tested for retention of the plasmid by the plasmid encoded antibiotic resistance marker and agarose gel electrophoresis. # RESULTS AND DISCUSSION # Isolation of pASR186 and pASR286 Plasmid Several Rhizobium strains were screened for the presence of a small multicopy plasmid by the method of Eckhart (1978) or Kado and Liu (1981). In Acacia Rhizobia sp86 isolated from the Acacia (Robinia pseudoacacia L.) root nodules grown in southern part of Korea, these methods revealed relatively small three plasmids, approximately 15, 9 and 5kb in size, together with two larger extrachromosomal replicons (Fig. 1). The 15 and 5kb plasmids were named as pASR186 and pASR286, respectively and were purified by sucrose density gradient ultracentrifugation for the construction of vector for Rhizobium gene manipulation. The Acacia Rhizobia sp86 was sensitive to tetracycline, chloramphenicol, kanamycin, sulfonamide and neomycin, but resistant to streptomycin (150 µg/ml) and ampicillin (25 μ g/ml). The pASR186 was observed to be transmissible by RP4 tra function but pASR286 was nontransmissible. # Restriction mapping of pASR 186 In order to construct restriction map, purified pASR186 DNA was digested with BamHI, PstI, Fig. 1. Indigenous plasmid pattern of the isolated Acacia Rhizobia from Acacia (Robinia Pseudoacacia L) root nodules; lane e, Acacia Rhizobia SP86. Fig. 2. Stratagy for construction of Rhizobium-E. coli shuttle vector combining indigenous multycopy plasmid pASR186 from Acacia Rhizobia SP86 and E. coli plasmid vector pBR322, and physical maps of the pASR186 and the constructed pGUR19 vector(I). Restriction pattern of pASR186(II): a, uncutted circular form; b, BamHI; c, EcoRI; d, HindIII; e, HincII; f, PvuII; g, SaII. EcoRI, HindIII, HincII, PvuII and SalI (Fig. 2-II). With the several double digestion analysis (data not shown), rough restriction map was constructed (Fig. 2-I). # Construction of vector The stratagy for construction of *Rhizobium-E*. coli shuttle vector with the replication and mobilization function from pASR186 and selection marker and cloning site from pBR322 is shown in Fig. 2-I. The pGUR19 vector was constructed by com- bining EcoRI-linearized pBR322 with EcoRI-linearized and dephosphorylated pASR196. With the ligation mixture, E. coli SM10 was transformed and Apr and Tcr transformants were selected for the pGUR19 vector. The selected transformants were analyzed for the plasmid sizing by agarose gel electrophoresis and correct orientation of the plasmid was analyzed by restriction digestion. The E. coli SM10 transformants which contain RP4-specific transfer function in chromosome (Simon et al., 1982) and have correctly sized plasmid constructed from pASR186 and pBR322 were used for conjugation donor to R. meliloti 102F51. R. meliloti 102F51 transconjugants having Apr and Tcr were selected and the stable maintenance and replication of the introduced vector in R. meliloti host was analyzed by agarose gel electrophoresis. The constructed vector pGUR19 was observed to be stably maintained in R. meliloti 102F51 host without integration onto chromosome or formation of multimeric forms (Fig. 3). Therefore the vector was further characterized for the host range and stability in the different Rhizobium and Agrobacterium hosts. #### **Host Range** The mobilization of the pGUR19 vector into R. Fig. 3. Agarose gel electrophoretic patterns of different Rhizobium and Agrobacterium transconjugants containing constructed pGUR19 vector: a, E. coli HB101 (pGUR19); b, A. tumefaciens 15955 (pGUR19); c and d, R. fredii USDA193 (pGUR19); e and f, R. meliloti 102F51 (PGUR19); g and h, R. leguminosarum 897 (pGUR19). meliloti 102F51, R. leguminosarum 897, R. fredii USDA193 and A. tumefaciens 15955 were tested with E. coli SM10 (pGUR 19) which contained RP4-specific tra function in chromosome for the mobilization of the vector. The vector could be mobilized into all the hosts tested with the mobilization frequency of 1.2×10^{-2} in E. coli HB 101 recepient and 4.6×10^{-4} in A. tumefacienns 15955. These mobilization frequencies of pGUR19 were slightly lower than those of pGUR9 constructed previously (unpublished data) combining replication and mobilization function from RSF1010 with selection marker and cloning sites from pACYC184, but comparable to those of pRK2501 or pRK249 (Ditta et al., 1985) in most hosts tested (Table 2). The vector could also be transferred to a variety of Rhizobium and Agrobacterium by transformation. Transformation frequencies were ranged from 5.4×10^{-7} in E. coli HB101 to 1.2×10^{10} in A. tumefaciens. These frequencies were slightly lower than those of pGUR9 and other broad host range vectors such as pSUP104 and pRK290, but usable in some Rhizobium hosts (Table 3). # Stability Stability of the pGUR19 vector was tested for the stable maintenance in *Rhizobium* and *Agrobacterium* hosts without selective pressure of antibi- **Table 2.** Host range and mobilization frequencies of pGUR19 vector. | | Mobilization frequency for donor strain ^a | | | |----------------------|--|--|--| | Recipient strain | E. coli SM10 (pGUR19) | | | | E. coli HB101 | 1.2 × 10 ⁻² | | | | R. meliloti 102F51 | 1.7×10^{-2} | | | | R. fredii USDA193 | 2.3×10^{-3} | | | | R. leguminosarum 897 | $5.6 imes 10^{-3}$ | | | | A. tumefaciens 15955 | 4.6×10^{-4} | | | ^a Mobilization frequencies into these recipiants were determined with the mobilizing donor strain *E. coli* SM10. All the mating were performed on membrane filter (Bolivar *et al.*, 1977). Transconjugants were selected for the aquisition of one of the plasmid-encoded resistance marker, tetracycline with the concentration of 50 micrograms per mililiter in *E. coli*, 25 micrograms per mililiter in *Rhizobium* and *Agrobacterium recipiants*. **Table 3.** Transformation frequencies of pGUR19vector in different hosts. | Host strains | Transformation frequency | | | |----------------------|--------------------------|--|--| | E. coli HB101 | 5.4×10^{-7} | | | | SM10 | 3.7×10^{-7} | | | | S17.1 | 6.2×10^{-7} | | | | R. meliloti 102F51 | 3.2×10^{-8} | | | | R. fredii USDA193 | 6.4×10^{-9} | | | | R. leguminosarum 897 | 2.1×10^{-9} | | | | A. tumefaciens 15955 | 1.2×10^{-10} | | | ^a Transformation frequencies were expressed per viable cell and the transformants were selected with tetracycline resistance with the concentration 15 micrograms per mililiter in *E. coli* and 25 micrograms in *Rhizobium* and *Agrobacterium* host. otics. The vector was fairly stable in *R. meliloti* 102F51 and *R. fredii* USDA193 but unstable in *R. leguminosarum* 897 and *A. tumefaciens* 15955 (Table 4). Loss of the plasmid vector or formation of Table 4. Stability of pGUR19 vector in different hosts. | ** | % Retention of marker | | | | | |----------------------|-----------------------|---------------|-----|-----|--| | Host strain | Antibiotics | at generation | | | | | | conc.a | 20 | 40 | 80 | | | R. meliloti 102F51 | Tc25 | 100 | 100 | 100 | | | R. leguminosarum 897 | Tc25 | 85 | 63 | 51 | | | A. tumefaciens 15955 | Tc25 | 91 | 74 | 59 | | | E. coli HB101 | Tc50 | 100 | 100 | 100 | | "Subscript indicates the concentration of antibiotics in micrograms per mililiter: Tc, tetracycline and stability of the vector plasmid was tested as described in the text. multimeric form was observed in some transconjugants in the unstable hosts after several generations. The stability of the pGUR19 in *R. meliloti* 102F51 and *R. fredii* USDA193 hosts was observed to be comparable to other broad host range vector with stable maintenance of the plasmid after 60 generations. # 적 요 Acacia Rhizobia sp86 으로부터 15kb의 multicopy tansimissible plasmid pASR 186을 분리하고 pASR 186의 replication 및 mobilization function 과 *E. coli* plasmid vector pBR332의 selection marker 및 cloning site를 연결하여 Rhizobium 숙주에서 안정하게 복제 및 유지되는 vector 구축을 시도한 결과 목적하는 pGUR 19을 얻었다. pGUR 19는 RP4 tra 기능을 염색체에 도입하여 만든 *E. coli* SM 10의 도움으로 여러 종류의 Rhizobium 및 Agrobacterium 에 접합에 의하여 전이될 수 있었으며 형질전환에 의한 도입도 가능하였다. 여러 종류의 Rec⁺ Rhizobium 및 Agrobacterium 숙주에 도입된 pGUR19 vector의 안정성을 조사한 결과 R. leguminosarum 897 및 A. tumefaciens 15955에서는 비교적 불안정하였으나 R. meliloti 102F51 및 R. fredii USDA 193에서는 매우 안정하였다. #### ACKNOWLEDGMENT We thank A. Pühler for kind providing *E. coli* SM10 and H. Keyser for *R. fredii* USDA193 strain. This research was supported in part by the 1985 Genetic Engineering Research Grant from Ministry of Education. #### REFERENCES Bagdasarian, M., R. Lurz, B. Ruckert, F.C.H. Frandlin, M. M. Bagdasarian, J. Frey and K.N. Timmis, 1981. Specific purpose plasmid clon- - ing vectors. II. Broad host range, high copy number RSF1010-derived vectors and host-vector system for gene cloning in *Pseudomonas*. Gene 16, 237-247. - Bagdasarian, M. and K.N. Timmis, 1982. Host vector systems for gene cloning in *Pseudomo*nas. Curr. Top. Microbial. Immunol. 96, 46-47. - 3. Berry, J.O. and A.G. Atherly, 1984. Induced plasmid-genome rearrangement in *Rhizobium japonicum*. J. Bacteriol. 157, 218-224. - Bolivar, R., R.L. Rodriguez, P.J. Green, M.C. Betlach, H.C. Heynecker, H.W. Boyer, J.H. Crosa and S. Falkow, 1977. Construction and - characterization of new cloning vehicles. II. A multipurpose gene cloning system. *Gene* 2, 95-113. - Boyer, H.W. and D. Rouland-Dussoix, 1969. A complementation analysis of the restriction and modification of DNA in E. coli. J. Mol. Biol. 41, 459-472. - Ditta, G., T. Schmidhauser, E. Yakobson, Y. Lu, X-W. Liang, D.R. Finlay, D. Guiney and D.R. Helinski, 1985. Plasmids related to the broad host range vector pRK290 useful for gene cloning and for monitoring gene expression. *Plasmid* 13, 149-153. - Ditta, G., S. Stanfeld, D. Corbin and D.R. Helinski. 1980. Broad host range DNA cloning system from gram negative bacteria: Construction of a gene bank of *Rhizobium meliloti*. Proc. Natl. Acad. Sci. (USA). 77, 7347-7351. - 8. Eckhardt. T, 1978. A rapid method for *' e identification of plasmid deoxyribonucleic acid in bacteria. *Plasmid* 1, 584-588. - Johnston, A.W.B. and J.E. Beringer, 1976. Pea root nodules containing more them one *Rhizo-bium* species. *Nature* 263, 502-504. - Kado, C.L. and S.T. Liu, 1981. Rapid Procedure for detection and isolation of large and small plasmids. J. Bacteriol. 145, 1365-1373. - Leemans, J., J. Langenaking, H. De Greve, R. Deblaere, M. van Montagu and J. Schell. 1982. Broad host range cloning vectors derived from the *Inc* W Plasmid pSa. *Gene* 19, 361-364. - Maniatis, R., E.F. Fritsch and J. Sambrook, 1982. Molecular cloning. Cold Spring Harbor Laboratory. Cold Spring Harbor. N.Y. - Morrison, P.A, 1977. Transformation in E. coli: Cryogenic preservation of competent cells. J. Bacteriol. 132, 349-351. - Nagahari, K. and K. Sakaguchi, 1978. RSF1010 plasmid as a potentially useful vector in *Pseudomonas* species. *J. Bacteriol.* 133, 1527-1529. - Priefer, U.B., R. Simon and A. Pühler, 1985. Extension of the host range of E. coli vectors by incorporation of RSF1010 replication and mobilization functions. J. Bacteriol. 163, 324-330. - Scherzinger, E., M.M. Bagdasarian, P. Scholz, B. Ruckert and M. Bagdasarian, 1984. Replication of the broad host range plasmid RSF1010: Requirement for three plasmid encoded protein. *Proc. Natl. Acad. Sci. (USA).* 81, 654-658. - 17. Selvaraj, G. and V.N. Iyer, 1981. Genetic transformation of *Rhizobium meliloti* by plasmid DNA. *Gene* 15, 279-283. - 18. Simon, R., U. Priefer and A. Pühler, 1982. A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in gram negative bacteria. Biotechnology 1, 784-791. - Tait, R.C., T.J. Close, R.C. Lunquist, M. Hagiya, R.L. Rodriguez and C.I. Kado, 1983. Construction and chacterization of a versatile broad host range cloning system for gram negative bacteria. *Biotechnology* 1, 269-275. - Van Vliet, F., B. Silva, M. van Montagu and J. Schell, 1978. Transfer of RP4: Mu plasmids to Agrobacterium tumefaciens. Plasmid 1, 446-455. - Zaenen, I., N. van Larebeke, H. Teachy, M. van Montagu and J. Shell, 1974. Supercoiled circular DNA in crown gall inducing Agrobactcium strains. J. Mol. Biol. 96, 109-127. (Received Feb. 24, 1989)