9/65/35 PLZT 세라믹의 디스플레이 응용

Application for Displays Using 9/65/35 PLZT Ceramics

요약

9/65/35 PLZT 세라믹을 그레인 크기에 따라 2단조성법으로 제조하여 그 전기적, 광학적특성을 관찰하고, 흰색도 북굴절방식의 반사형 디스플레이소자를 제작하여 그 동작특성을 조사하였다. P-E 곡선은 슬림(slim)형의 히스테리시스를 나타냈으며, 그레인이 치밀수록 유기분극과 광도가 줄어지만 북굴절두은 감소하여 디스플레이소자 구동시 콘트라스트 비(contrast ratio)가 감소하였다.

디스플레이소자의 동작개시 전압은 1.7배 극간 갭에서 300 V이고, \(V_{(CR-Max)}\) 전압은 550 V였으며, 가시광도에 따른 콘트라스트 비의 비율(\((60\degree / 90\degree)\), \(G_s: 4 \mu m\))은 0.67이었다.

Abstract

9/65/35 PLZT ceramics with a series of grain sizes were fabricated by the two stage sintering method, and their electrical and optical characteristics were measured. The transversal birefringence mode display device of reflection type was made and its operation characteristics were investigated.

The P-E curves of 9/65/35 PLZT ceramics showed slim loop type hysteresis, and as grain size was increased, the induced polarization and transmittance increased, but the birefringence decreased and so the contrast ratio of dispisy become lower.
Driving voltage of display with 1mm electrode gap was 300V and \(V_{\text{CH,M}} \) voltage was 550V, and relative contrast ratio according to viewing angle (\(\pm 60^\circ / 90^\circ \), Gs:4um) was 0.67.

1. 서 론

1971년 투명한 PLZT 세라믹이 처음 제조된 이래 여러 전기광학분야의 연구와 응용이 진행되어 왔다. PLZT 세라믹은 가시광 영역에서 투명도가 우수하고, Pb 자리에 침환되어 지는 La의 양과 Zr/Ti 비에 따라 결정구조가 변화하며, 전기광학특성도 1차 및 2차전기광학특성, 광모리특성 등으로 변화하므로 이를 이용하여 광모리소자, 광서터, 영상측정, 표시소자, 광센서등에 응용이 가능하다.\(^1\)\(^2\) La/Zr/Ti 조성비가 9/65/35인 PLZT 세라믹은 전기를 인가하지 않은 상태에서는 광학적으로 동방성이지만, 전기를 인가하면 이방성이 되어 전자의 자승에 비례하는 복글절이 발생하는 2차전기광학효과(Kerr 효과)를 나타내므로 이를 이용하면 디스플레이소자로 응용이 가능하다.\(^2\) 현재 실용화 되고있는 디스플레이소자로는 CRT, LED, LCD, 등이 있으며 PLZT 세라믹을 이용하면 LCD와 유사한 방식의 디스플레이소자를 제작할 수 있다.\(^3\)

PLZT 세라믹의 전기광학적 특성 및 디스플레이 특성은 세라믹의 미세구조 특허, 그레인의 크기에 영향을 받으며, 그레인은 작은 (fine grain) 경우 복글절이 유리하고 큰 (coarse grain) 경우 산란에 의해 복글절이 방해를 받게 된다.\(^4\) 따라서 본 연구에서는 9/65/35 PLZT 세라믹을 2단소성법을 이용하여 그레인의 크기에 따라 제조하여 그леч인크기가 세라믹 시편에 전기적, 광학적 특성에 미치는 영향을 조사해 보고 그레인크기 변로 디스플레이소자를 시작하여 디스플레이 특성을 관찰하여 디스플레이소자 응용에 적합한 특성을 보이는 PLZT 세라믹을 연구하고자 한다.

2. PLZT 세라믹의 디스플레이 원리

PLZT 세라믹은 디스플레이소자로 응용하는 데는 종모드 산란방식 (longitudinal scattering mode)과 횡모드 복굴절방식 (transversal birefringence mode)을 이용할 수 있다.\(^1\)\(^2\) 종모드 산란방식은 광과 전자 방향을 서로 평행하게 한 구조로 빛의 산란효과를 이용한다. 본 연구에서 시행한 횡모드 복굴절방식은 광을 전계방향과 수직으로 하여 시편에 복굴절을 유기하여 디스플레이를 나타내게 하는 방식이다. 그림 1은 횡모드 복굴절방식의 구조로서 전계를 가지며 이방성이

그림 1. 횡모드 복굴절 방식의 구조
Fig 1. Structure of transversal mode birefringence types
된 PLZT 시험으로, 전단의 편광기를 통하여
45°로 펴된 단색광 (monochromatic light)이 입사하게 되면 근극축과 그의 수직
인 축방향의 골절율의 차이가 생기게 된다.
이 때 근극축방향의 골절율을 \(n_e \) (비정상
과의 골절율)라 하며 그의 수직인 축방향의
골절율을 \(n_o \) (정상과의 골절율)라 한다.
골절율끼리 빛의 속도는 각각

\[
U_e = \frac{c}{n_e} = \frac{c}{\sqrt{\varepsilon_x}}, \quad U_o = \frac{c}{n_o} = \frac{c}{\sqrt{\varepsilon_y}}
\]

로 여기서 \(\varepsilon \)는 \(y \)축 방향의 유전율,

이며, \(\varepsilon_x \)는 \(z \)축방향의 유전율이고 \(c \)는 광
속도, \(U_e \)는 비정상과의 속도, \(U_o \)는 정상과
의 속도이며 빛이 \(x \)방향으로 진가하는 경우
이다.

세라믹 시험에 전극을 인가하여 이방성이

의 전극방향 (\(z \) 방향)과 그의 수직방향
(\(y \)방향)의 유전율이 다르며 이는 골절율
의 변화를 주게 된다. 따라서 두방향의 골절
율의 차 \(n_e - n_o = \Delta n \) -(2-1)의 복종상이 발
생하게 된다. PLZT 시험의 두께를 \(d \)라 할
때 광로차 (retardation) \(\Gamma \)는

\[
\Gamma = \Delta n \cdot d \quad \ldots (2-2)^3
\]

로 되어 광로차를 구할 수 있다.

- WOB (white on Black) 동작 \(^4\)

그림1에서 45°로 펴된 빛은 이방성 PLZT
세라믹을 통과한 후에는 식 (2-2) 와 같은 광
로차가 생기게 되며 후단의 분광기를 통과한
후에 투광의 세기는 (편광기와 분광기가
서로수직)

\[
I = I_o \sin^2 \frac{\Gamma \pi}{\lambda} \quad \ldots (2-3)
\]

여기서 \(\lambda \)는 단색광의 파장, \(I \)는 투광의
세기이고, \(I_o \)는 입광의 세기이다. 적류 전
압을 인가하지 않을 때는 상지면 \(\Gamma = 0 \)가 되
어 광의 세기 \(I = 0 \)이므로 후색이 디스플레이

이 되며, 적류 전압을 인가하여 상지면 \(\Gamma \)를

\[
\Gamma = \frac{2}{\lambda} h \quad \ldots (2-3) \text{식에서}\]

이가 최대로 되어 백색을 디스플레이 하게 된다.
또한 \(\Delta n = \frac{1}{2} n^3 (S_{12} - S_{11}) E \) \ldots (2-4)
여기서 \(n \)은 시험의 골절율 (약 2.5), \(E \)
는 시험에 인가된 전압이며, \(S_{11}, S_{12} \)는 2차
전기광학계수이다. 여기서 분광정은 전극의
자온에 비례하므로, 시험에 인가하는 전압에
따라 \(\Gamma \)를 변화시킬 수 있다. 상지면 \(\Gamma \)가 \(\frac{2}{\lambda} \)
생길 때 전압을 \(V = \frac{2}{\lambda} \) (half wave voltage)
라 하여 디바이스 설계에 고려할 전압이다.

- BOW (Blak on White) \(^4\)

편광기와 분광기가 서로 평행하면 투광과
의 세기는

\[I = I_o \cos^2 \frac{\Gamma \pi}{\lambda} \quad \ldots (2-5) \]

이다. 전압을 인가하지 않을 때는 \(\Gamma = 0 \)가
되어 광과 I가 최대로 되어 백색을 디스플레이 한다. 반파장전압을 가하면 식2-5에
서 \(\Gamma = \frac{2}{\lambda} \)이므로 \(1 \)가 최소로 되어 흰색을 디
스플레이 한다. 본 연구에서는 그림2(b)처럼
분광기력을 반사막을 두는 반사형 디스플레이
로 하였으며, 또한 식 (2-2), (2-3), (2-4)
(2-5)는 단색광에서의 관계가 백색광에서
도 유사하게 적용할 수 있다. \(^3\)

3. 실험

3-1. 시험제조와 디스플레이소자 제작

디스플레이소자용 PLZT 세라믹의 조성은
PLZT의 상용형 \(^1\)에서 2차전기광학 특
성의 보이지 slim-loop의 영역에서 조성성
\(\text{Pb}_{1-x} \text{La}_x (Zr_y Ti_{1-x})_{1/4} \times \text{O}_3 \)에 의하여 조성
비가 \(x/y/z = 96/65/35 \)인 조성제료를 선
택하였다. 순도 99.9% 이상의 \(\text{PbO}, \text{La}_2 \text{O}_3, \text{ZrO}_2, \text{TiO}_2 \)의 원료분말을 사용하여 산화물
혼합방법 (Mixed Oxide Method)으로 조
성원료를 준비하였으며, 이를 Pellet 형태로 소형화한 후 2단소성법5)으로 시험을 제조하였다. 1단계에서 graphite mould를 사용하여 1150℃에서 약 2시간 정도 진공상태에서 핫프레스하였으며, 1단 핫프레스된 시편은 2중의 알루미나 도기나속에 넣고, PbZrO₃ + 10wt % PbO의 분말로 주위를 채운후 5~50시간 소성을 하여 그레이크를 각각 4, 5.8, 7.8, 8.7, 10 [μm]로 변화 시켰다.

제조된 PLZT시편을 다이아몬드 절단기로 양계 찍고 SİC연마재로 세반 광투과율, 복굴절률, CR 특성측정을 위해 두께 t = 0.36 mm으로 조절하여 투명한 박판으로 만들었다.

전극설계를 위하여 시편의 한쪽면에 Ag를 진공증착 하였으며, 디스플레이를 위한 전극 모양은 photolithography 방법에 의하여 그림 2(a)와 같이 단일 간격형태로 설계 하였다.

그림 2. PLZT 디스플레이
a) 전극구조
b) 반사형 디스플레이

Fig 2. PLZT Displays
a) electrode structure
b) reflective displays

이렇게 설계된 시편으로 제작한 반사형 디스플레이소자 구조와 디스플레이원리는 그림 2(b)와 같다.

3-2. 측정
제조된 시편의 그레이크를 광학현미경으로 관찰하여 그 크기를 측정하였으며, LCR메터로 온도에 따른 유전상수의 변화를 측정 하였다.

Sawyer-Tower 회로를 사용하여 시편의 P-E 히스테리시스 곡선을 관찰하였고, Spectrophotometer (UV-240)를 사용하여 시편 두께 t = 0.36 mm로 조절하여 광투과율을 측정 하였다. 광원은 He-Ne Laser로 하고, 편광기와 분광기의 광축이 90°(cross) 되게 하고 그 사이에 1/4 plate의 장착 및 단 축이 편광기와 분광기의 광축과 일치되게 배 열하였다.

여기서 1/4 plate의 반향상과 청상과의 상처를 90° 생기도록 하여 편광되도록 하는 역할을 하며 최종 분광기를 통과한 광이 완전히 소각되었는지를 Optical Powermeter로 확인한후 시편의 분극축이 편광기 및 광축과 45°가 이루도록 하여 1/4 plate의 장착이 사이에 측정시켰을 고정시킨 그림 3과 같은 광학배열로 전체를 인가할수 다시 소각되는 지점을 희미각을 구하여 광로차를 계산하는 senarmont 방법6)을 사용하 여 광로차를 구하고, 시편의 두께로 나누어 복광절을 Δn을 구하였다.

그림 3. 복광절 측정을 위한 광학배열

Fig 3. Optical alignment for measuring birefringence
디스플레이된 소자의 디스플레이 정도를 측정하기 위하여 그림 4와 같은 측정장치로 BOW와 WOB 방식의 CR (contrast Ratio)을 측정하였다.

\[
BOW\text{ 방식: } CR = \frac{Bn}{Bd} \quad \text{.......... (3-1)}
\]
\[
WOB\text{ 방식: } CR = \frac{Bd}{Bn} \quad \text{.......... (3-2)}
\]

\(Bn\): 배경의 symbol을 제외한 것의 brightness

\(Bd\): 디스플레이상태의 symbol의 brightness

그림 4. Contrast Ratio 측정장치

Fig 4. Measurement arrangement for Contrast Ratio

4. 결과 및 고찰

1단의 핫프레스 시간을 고정시키고 2단 소성에서 PbZrO\(_3\) + 10wt % PbO의 분말로 시편의 주위를 채운 후 소성시간을 변화시켜 그림 5와 같이 그레인크기를 변화 시켰다.

소성시간에 따라 시편의 밀도도 변하고 있으며 20시간 이후부터 서서히 감소하고 있다. 이는 파이 PbO에 의하여 만들어진 응상이 소성초기 급격한 증발을 보이다가 20시간 전후하여 증발이 서서히 이루어져 침밀한 미

그림 5. 소성시간에 따른 그레인 크기와 밀도의 변화

Fig 5. Variations of grain size and density as a function of sintering time

세구조를 갖도록 한다.

시편의 유전상수는 그림 6과 같이 온도에 따라 유전혁화 (dielectric relaxation)를 보이고 있다. 주파수 변역임 9/65/35 PLZT 세라믹은 ABO\(_3\) 페로브스카이트 구조를 갖고 있으며 A자리에 Pb\(^{2+}\) 대신 La\(^{3+}\)가 치환되어 들어감에 따라 전하보상을 위해 2개의 La 이온에 의해 하나의 Pb 공공이 유발

그림 6. 온도에 따른 유전상수의 변화

Fig 6. Variations of relative dielectric constant as a function of temperature
7) La⁺³가 치환되어 들어가는 양이 많음에 따라 이 격자공
공은 증가하여 결정내의 조성의 공간적, 미
시적 불균일성을 조정하여 르비온도가 국소적
으로 다르게 되어 완만한 상전이를 일으키게
된다.
또한 르비온도가 그레인크기가 커질수록 더
소 감소하는 이유는 Okazaki 등 ⁸)의 공간로
델에 의하면 그레인 경계에 불순물과 공격자
점으로 형성된 공간전하층 (space charge
layer)은 그레인이 크면 클수록 이층은 상
대적으로 작아지게 되고, 동시에 공간전하전
계와 감금 (locked-in) 강수전분극도 낮아
져 내부의 도메인의이동이 쉬워지므로 르비온도
가 낮아진다.
그레인의 크기가 클수록 유전상수가 증가하
는 이유는 그레인이 작은것 내부에 있는 도
메인보다, 그레인이 큰것 내부에 있는 도메인
들은 상대적으로, 그레인 바운드리가 작기때
문에 내부의 도메인 벽 (domain wall)이동
을 용이하게 해주며, 그레인 바운드리가 많으
면 도메인 벽이동을 용이치 않게 하여 그레
인크기가 클수록 유전상수가 증가하려라 생각
된다.
9/65/35시련의 상온에서의 P-E 히스테리
시스 폭선은 항전계 (Ec) 와 전류분극 (Pr)
의 폭이 좁은 slim형을 보였으며 따라서 2
차전기장 특성을 이용할 수 있는 근거가 된다.
그림 7은 그레인크기 10μm의 시련의 P-E
히스테리시스 폭선으로, 각 시련으로부터 측
정한 최대전계에서의 분극값인 유기분극 (induced polarization)의 변화는 그림 8과 같다.
그레인크기가 증가함에 따라 유기분극값이
증가하고 있으며 이는 앞에서 언급한 그레인
크기가 증가할수록 내부도메인 벽의 이동이

그림 7. P-E hysteresis곡선 (Gs: 10μm)
Fig 7. P-E hysteresis (Gs: 10μm)

그림 8. 그레인 크기에 따른 유기분극의 변화
Fig 8. Variations of induced polarization
as a function of grain size

용이한 메커니즘과 일치하고 있다. 여기서 그
레인크기가 9.5 [μm] 이상에서 오히려 낮아
지고 있는데 그 이유는 그단 분위기소성시간
이 40시간 이상인 경우 그레인크기가 9.5
[μm] 이상이 되었는데, 이처럼 장시간 소성
을 하면 그레인바운드리에 점유한 PbO 및 불
순물이 거의 사라지고 조성중의 PbO의 이온이
산화되어 PbO로 증발함으로써 격자공공이
증가하게 되어 공간전하층의 형성에 도움을
주어 유기분극이 감소하려라 생각된다. 디스
플레이소자의 제작을 위해서는 낮은 전계에서
 쉽게 도메인포화가 생겨서 유기분극값이 작아

- 122 -
하고 따라서 2차 전기광학특성이 크게된다.
시편의 중요한 특성인 광무광물은 그림 9와 같다. 0.37 \(\mu m \)에서 기초흡수단 (fundamental absorption edge)을 보이며 이 이후 광장에서는 투과하기 시작하며, 0.8 [\(\mu m \)] 근방의 광장영역에서 각 브레인크기에 따라 60 ~ 75\%의 투과율의 차이를 보여 브레인크기가 증가함에 따라 광무 광물의 증가함을 보였다. 이는 브레인가 커지면 상대적으로 광학적 부정합이 되어 광산란의 원인이 되는 브레인바운태러 영역이 줄어들므로 광무광물이 증가된 것으로 판단되며, Nagata\(^9\)의 연구결과와 거의 일치하였다. 일반적으로 투명세라믹의 광무광물의 감쇄요인은 반사에 의한 외부 손실과 불결의 조성 및 조적에 기인한 광흡수와 산란등 내부 감쇄요인이다. 광의 수직입사시 Fresnel 법칙에 의하면 전면반사사 R\(_{\min}\) = \((n-1)^2/(n+1)^2\) \(\nu\)차중반사까지 고려할때 R\(_{\max}\) = \((n-1)^2/n^2+1\)이며\(^10\) PLZT 광물중 n=2.5로 하면 반사율 R은 최소 18.4\%에서 최대 31\%로 평균값을 25\%로 가장할 수 있다.
따라서 브레인가 가장 큰 10 \(\mu m \)에서는 75\%정도의 투과율로 25\%정도의 반사를 제외하면 내부 감쇄요인은 거의 없으나 4 \(\mu m \)시편의 경우 반사요인을 제외하면 10\%정도의 내부감쇄요인이 생겨 광무광물의 저해요인이 됨을 알 수 있다.
디스플레이의 ON-OFF 동작의 판단을 위해서는 식 (2-2), (2-3), (2-5)에 의한 복굴절을의 변화가 중요하다. 그림 10과 같이 브레인크기가 작을수록 복굴절은 2차함수적으로 변화하였다. 저전압 (100 ~ 200 V)

![그림 10. 직류 전압에 따른 복굴절의 변화](image)

Fig 10. Variations of birefringence as a function of D.C. voltages.

시에는 브레인이 큰 시편의 복굴절이 작은 시편보다 증가하였으나 전압이 증가함에 따라 브레인이 작은 시편의 복굴절이 증가하는 경향을 보였으며, 이는 그림 8에서처럼 시편의 유기분극은 브레인이 커질수록 근소하게 증가하며, 따라서 브레인이의 도메인 반전이 용이하여 저전압에서도 복굴절이 쉽게 일어난
다. 그러나 인가절압이 V 1/2에 가까운 높은 전계에서는 반대의 결과를 보여 복공절이 그레인의 가짐에 따라 방해를 받게 된다. 이는 그레인의 작은 경우는 그레인 내의 도메인이 단분역 모델로 되어 광학상이 용이하지만 그레인이 커지면 내부 도메인이 증가하고 도메인의 이동이 없을 때도 분역 모델로 되어 인가전압에 의한 광학제어가 제약을 받으며, 따라서 그레인바운데너 도메인벽에서의 광산란이 단분역 모델보다 증가하여 depolarization 메커니즘으로 작용하여 복공절율이 감소하기 때문이라 사료된다.

그림 2(a)의 형태에 그림 2(b)의 구조로 구동시키던 백색광 (white light)에서의 CR의 변화는 각 그레인크기에 따라 그림 11에 나타내었다. 인가전압에 따라 CR은 증가하고 있음으로 550 V 정도에서 최대로의 CR을 보였고, 이후에는 포화현상을 나타냈다. 그레인이 커짐수록 CR의 증가량은 둔화되어짐을 알 수 있다.

그림 12는 CR 특성이 가장 우수한 시편 (Gs(그레인크기) : 4 μm)의 디스플레이 결과로서 디스플레이소자 옵용을 위한 PLZT 세라믹은 그 투명도와 빛이 들어 그레인이 작용수록 적합화라 사료된다.

그림 12. 표시소자의 모양
Fig 12. Numeric-Displays

Gs : 4 μm시편의 WOB 및 BOW구동방식의 비교는 그림 13과 같다며, WOB방식은 CR의 비가 4.8로서 약간 우수하였으나,

그림 13. 직류전압 및 가시각도에 따른 CR의 변화
Fig 13. Variations of CR as a function of D.C voltages and viewing angle
거의 차이는 없었으며 가시각도에 따른 CR의 변화는 그림 13에서 처럼 60°/90°의 비가 0.67로 LCD의 0.2에 비해서 그 특성이 우수 하였다. 이것은 PLZT 세라믹의 높은 광절률 (n = 2.5)에 기인한 것으로 사료 된다.

그림 14. 인터디지털형 디스플레이
Fig 14. Interdigital type display

5. 결론

본 연구를 통하여 얻어진 결론은 다음과 같다.

(1) 9/65/35 PLZT 세라믹은 허스테리시스가 적은 slim형의 P-E곡선을 나타내고, 그에 따라 높은 급속도를 대체로 2차함수적으로 증가 하였다.

(2) 그레인간 거절수록 유기분극과 광동분극은 감소하여 디스플레이 구동시 콘트라스트 비율 감소 하였다.

(3) 가시각도에 따른 콘트라스트 비율 (60°/90°)이 0.67로 LCD의 0.2보다 월등히 우수 하였다.

(4) PLZT 디스플레이의 동작전 압 전극간격 1 mm에서 300 V이고, 최대 콘트라스트비는 나타내는 전압은 550 V이었다.

본 연구에서 연구한 PLZT 세라믹을 이용한 디스플레이는 구동전압이 높아서 실용상 어려움이 있지만 Maldonado 등은 그림 14와 같은 interdigital 전극을 사용하였던 시험 전극 두께 50 μm와 전극간격 25 μm로 약 20 V정도는 구동전압을 감소할 수 있다고 보고하고 있다.

이러한 구동전압만 개선되면, LCD에 비해 여러 장점을 갖고 있으므로 LCD에 대한 대체소자로 응용이 기대된다.

※ 본 연구는 과학재단 특성연구개발과제
학술연구조성비에 의하여 수행된 연구의 일부이며 과학재단에 감사드립니다.

참고 문헌

