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1. Introduction

We often use statistical models to do the data analysis. The main interests are how to construct the
relation ship between the responses and the predictors for prediction and how to check the departures from
model.

Regression is the best known statistical method to describe the response by the given predictors. There
are unobservable errors in measurements of responses or predictors or both. We need assumptions for these
errors when we build the regression models. Thus we assume that errors are independent, identically distri-
buted normal variates with mean o and 02

There are many tools to check the departures from model. Ordinary residuals have been the most com-
mon building blocks for checking models in linear regression models. Every statistical books and computer
packages use ordinary residuals as diagnostics. But they have deficiencies as diagnostics, so recursive
residuals are suggested{Brown, Durbin, and Evans(1975); Galpin and Hawkins (1984); Hawkins(1987)).

There will be further discussions in the following section. In section 3, we will discuss nonlinear regres-
sion models. In nonlinear regression models, unlikely as linear models, the exact behavior of residuals are
intractable. We require various approximations to express different types of residuals. We will compare the

distributional behaviors of the different types of residuals through the simulation study.

2. Linear Regression Models

We consider a standard linear regression model
Y=XB+¢ (2.1)
Where Y is a nX1 vector of ohserved responses;
X i1s a nXp matrix of known constants;
B is a pX1 vector of unknown parameter to be estimated; € is a nX1 vector of true errors which we
assume they are independent, identically normally distributed with mean 0 and variance ¢2
Let B be the maximum likelihood estimate of B. Then nX1 vector of ordinary residuals is
e=Y—XR (2.2)
where B =(XTX)"'XTY.
By using (2.1), we can rewrite e as
e=XB+ ¢ —X(X'X) XY
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=XB+ & —X(XTX) "' XT(XB+¢€)
=XB+ e —XB—X(XTX) 'XTe
=(I—-P)e (2.3)
where I is nXn identity matrix and P=X(XTX) !XT is the projection operator onto the column space of
X.
Under the model(2.1), € ~N(0, ¢2I), the ordinary residuals are distributed as
e~N(0, (I-P)a?) (2.4)
From(2.4), we can see the deficiencies of ordinary residuals as diagnostics . first, they are mutually corre-
lated but € are uncorrelated; second, they are heteroscedastic; third, they are dependent on P, that is, they
are dependent on the structure of X; Fourth, their structure can be affected by one outlying observation.
Suppose we partition the data set into the first k. cases and n—k cases. Then we can write X and Y as,
for x.=p+1,- , 0,
XT=(X" XTaoi)y YT=(YiT YTaoy)
And B =(X2XX, ) 'X"Ys is the maximum likelihood estimate of B based on the first k cases;
projection, operator Hy =X, (X, TX,) 71X, T _
The recursive residuals are defined by (Brown, Durbin, and Evans (1975)),

— YK—XKTﬁK
KT /1—Xg " (Xx Xk) Xk
- YK-‘XKT/}K—l (2.5)
~1—Xk (Xx Xk—1)" Xk ’
for K=p+1,«-ee ,n

where XxT is K™ row of X.
The recursive residuals can be obtained by the iterative processes as above. These processes can be
understood as :
1. For n cases (full data), fit the model and standardize the n™ residual so that r,~N (0, 62) then delete
it.
2. For n—1 cases (without n™ case), fit the model and standardize the (n—1
(0, 02) then delete it.
3. Continue the process until K=p+1.
Since we need at least p cases to fit the model, we can get only n—p recursive residuals. We can show

)t residual so that ry—;~N

that these recursive residuals are uncorrelated thus they are independent under normality. By the definition,
with the independence, the recursive residuals are iid N (0, 02).

The recursive residuals are more effective under the situations when the model holds at one of the ends
of data set. If the model confines to the first K cases, then, after deleting the last n— , cases, the recursive

residuals will not be affected by those outlying or influential cases.

3. Nonlinear Regression Models

A stadard nonlinear regression model is given by
yi=f(X1, 0)+€i (3.1)
for 1=1,+-,n

h“response value y;;8 is a pX1 vector of unknown

where x; is Known constant associated with the i*
parameters; f is a response function which is assumed to be known, continuous, and twice differentiable
with respect to 6#; € is nX1 vector of random variates which are iid N (0, 02). Let f,=f (x;,8) for
simplicgtty‘ We denote V is a nXp matrix of the first derivatives of f with respect to @, then its element

V= 3 6ij
i i ; S - WY S S USRS OO S WY J O
tives of f with respect to 4, then its element wijk 26,50: for i=1, n; j=1 P; k

for i=1, -+ , n and j=1,---- ,p- Let denote W be the nXpXp array of the second deriva-

P. The array can be shown as the stack of matrices. ¢ is the maximum likelihood estimate of . V and

W are evaluated at the true value of 6.
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As mentioned earlier, we require various approximations to experss the different types of residuals. The
most common approximation has been used is a linearization technique. The linear approximation (LA)
assumes that the lifted line which are mapped on the solution locus corresponding to a line through the 8
value of parameter space is linear. The solution locus in linear models is linear. If the lifted line is close
to be linear, then almost of all diagnostics are similar to those of linear models. We simply replace X in
linear models by V and use all inferences for diagnostics with the same manners. If the intrinsic curvature
which measures the curvature of the lifted line at {( §) is large, however, LA is no longer accurate. The
interested reader may refer to Bates and Watts (1980). The refined approximation is called the quadratic
approximation {QA). Since QA adopts the second derivatives of f, it is more accurate even when the
intrinsic curvature is nonnegalizable. The calculation if much more complicated. If we employ the further
approximations which are tedious, then we may expect the more accurate results. But QA is sufficient for

this research.

3.1 Ordinary Residual
The ordinary residuals are
e=Y—f(8) (3.1.1)
Where f( §) is the fitted value.
With the differentiability assumption of f, we can obtain the second ordeér Taylor's expansion of f(§):
f(8)= ((8)+V - (B=8)+5(8—0)"W(5—0)
=) +V - $+5 4TW$
where 4=8—146
e can be rewritten as
e= Y—{(6)-V$—L$TW4
—c—VH—T4TWE  (3.12)
For (3.1.2) to be useful, we require the analogous expression for ¢.
We can obtain the expression for ¢ by expanding the likelihood equation about # and ignoring all

terms that involve third and higher derivatives of f. The loglikelihood function is

Lg)=—77 3 (n—(8))2  (3.1.3)
assuming VTV nonsingular, we can write ¢ as
$= (VIV) " IVTe +(VTV) 7 [eT] (W] ¢ —%(VTV)*IVT( $TW ) (3.1.4)

the first term in (3.1.4) is the standard LA of ¢.
We substitute (3.1.4) into the second term of (3.1.2) then e can be rewritten
e= (I-H) e —V(VTV)"'[T] [W] ¢ —%(I—H)( $TW4) (3.1.5)
where H=V (VTV)7'VT is the projection operator onto the space spanned by the columns of V.
The first in (3.1.5) is the standard LA of e.
To obtain the quadratic approximation of e, we substitute (I—H)€ and (VTV) 'VTe for e and ¢ in
(3.1.5) respectively. The QA of e is
ex= (I-H)e —=V(VIV) e T [I-HI [W](VTV)"'VTe —*;“5 TVIVIV) T HI-HI WH(VTV) " 'VTe
= (I-H) e =V(VTV) e TCe — ¢ TBe (3.1.6)
where C={[I—H] [WH{VTV)7'VT}V is a pXnXn array composed of vertical faces of [I—H][W](VTX
V)"IVT and B=V(V'V) " HI-HI W) (VTV)"'VT is a nXnXn array.
Here are theorems and facts, which are already known, to be useful for finding moments of different
types of residuals :
suppose A, B be any nXn symmetric matrices
Theorem 1:E(€eTA€ )= o%r(A)
Theorem 2 : Var( € TA e )=20%,(A?)
Theorem 3: Cov(eTAe, eTBe)=20%,(AB)
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Fact 1:VI(I-H)=(I-H)V=0
Fact 2. E(€)=E(€%)=0
From (3.1.6), we can get the mean of e easily
Ele)= —%ﬂztr(B) (3.1.7)
where t,(B) is nX1 vector with its element t,(B;), trace of i face of B.
We can easily show that the three terms in (3.1.6) are uncorrelated. Therefore the variance of e is sum
of variances of each term.
Varle)= o2(1=H)+20'V(VIV) "I (C(VTV) VT +—a*t(B?)  (3.1.8)
we know that e and the fitted values are uncorrelated in the linear regression models. In nonlinear regres-
sion models,
covie, f(8))= o%(I~H)—var(e) (3.1.9)
thus they have negative correlation. It shows that e may strongly depend upon the § value. This gives the
motivation to the projected residual which will be discussed in section 3.1.3.
3.2 Predicted Residual
Suppose we fit the model based on n—1 cases. Then we can obtain n—1 ordinary residuals, that is,

e=Y,—f(x,, 8) (3.2.1)
for i=1, - ,n—1
where § is the maximum likelihood estimate of & from the regression on n—1 cases. And we can get.
=y, — (X, 8) (3.2.2)

We call r, as a predicted residual.

In this section, we introduce some other notations to avoid the confusion, but they are corresponding to
notations in the previous section.

1. Vis (n—1)Xp matrix of the first n—1 rows of V

2. W is (n—1)XpXp array of the first n—1 faces of W

3. 8 is the maximum likelihood estimate of § based on n—1 cases.

Let r=(& r,) be anX1 vector of residuals from the regression which use only the first n—1 cases to
estimate the parameters, where & is the (n—1)X1 vector with its element as (3.2.1). Then we follow the
same processes to obtain the QA of r.

Sine r=Y—1(8), we can rewrite r in the expanded form.
r= Y—f(ﬁ)—IVyT——;sTrWsT
= Vi FTWE (3.2.3)
where ¢ =0 — 8

To obtain the expression for 4, we also expand the likelihood equation and ignore all the terms with
third and higher derivatives of {.

Assumin vV to be nonsingular,

F= (VIV)"IWTE +(VTV) " [e7] [W] § -

The first term in (3.2.4) is LA of § .

We replace ¢ of the second term in (3.2.3) by (3.2.4) then r can be rewritten as

= & —VIVIV) VTE +(VTV) " 6] W] B‘—%(VT(V)”VT(TTW,T)I —SFWF (.25
From (3.2.5), (I—H) € is LA of & where I is the (n—1)X{n—1) identity matrix and H=V(VTV) VT,
We substitute (I—H) &, (VIV)"VTE for & and ¢ in (3.2.5) respectively to obtain the QA of r.

We are interested in r, only so we show the QA of r, and moments of r, in the rest of the present

%(VTV)‘IVW,TTA $) (3.2.4)

section. The QA of r, is
e ac e T(VIV)IEEE—LET6E (3.2.6)
where a=(—rnT(vTV)_1VT 1) a nX1 vector;
E= {I—H] [WH{(VTV)"'VTV is a pX(n—1)X(n—1) array;
and G=V(VTV) 1[a] [w](VTV) VT is a (n—1)X(n—1) matrix.

The mean of r, is,
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E(r,)= —%aztxc) (3.2.7)
The variance of r, is again the sum of variances of each term in (3.2.6).
Var(r,)= o%-a"+2 a“V,,T(VTV)“t,(Ez)(VTV)"Vﬁ%a*t,(cz) (3.2.8)

3.3 Projected Residual

As seen in section 3.1, the distribution of e may strongly dependent on true €. It makes hard to use e
as the representation of €, since the mean of ordinary residuals may subnstautially depart from O. In (3.1.
6), it is clear that the second term is in the column space of V and the third term is in the column space
of [I—H][W]. These two terms contribute to the potential problems when the intrinsic curvature is large.
Cook and Tsai (1985) proposed to project e onto the orthogonal space against the space spanned by the
combination of V and W. This projection removes the dependence of e on # substantially. They call this
type as the projected residuals.

They define the projected residual, Pe, as

P*~ (I-H)e—Pc (3.3.1)

where P* is the projector onto the orthogonal space against the space spanned by P+lI_D:H—) vectors of
V and W, P’ is the projector onto the orthogonal space against the space spanned by P—(Ezi vector of
W; and P*=(I—H)+P". Therefore the moments of P*_ are

E(P%)= 0 (3.3.2)

Var(P*%)= P* a2 (3.3.3)

3.4 Projected Ordinary Residual!

In linear regression models, we know that e, is uncorrelated with & (n—1)X1 vector of vesidual from
the regression based on n—1 cases. The independence of recursive residuals as defined in section 2 could
be obtained in part. However, we can not obtain the uncorrelatedness between e, and & in nonlinear regres-
sion models.

We project e, onto the space of & (n—1)X1 vector of residual from the regression based on n cases.

This projection will reduce the dependence of e, on & So we regress e, on & so that its residual is
uncorrelated with & We call this residual as the projected ordinary residual, Pen. Then Pen is defined as

Pe,= e,—18& (3.4.1)
where r=cov{e,, &) [covie,g)] !

Therefore we obtain that cov(Pe,g)=0

We use the covariance and the variance terms to express the moments of Pe, only for convenience.

The mean of Pe, is

E(Pe,)= El(e,)—cov(e,,&)[cov(ze)] !E(z) (3.4.2)

The variance of Pe, is

Var(Pe,)= Var(e,)—2Cov{e,, &) [cov(&,2)] “'cov(e,&)T+covie, &) [cov(ze)] 7!+ var(z) - [cov(ze)] ™’

cov(a,e,) (3.4.3)

3.5 Projected Predicted Residual
The predicted residual r, is uncorrelated with & in linear regression models. But they are not uncorre-
lated each other in nonlinear regression models. We try to reduce this dependency by using another projec-
tion method. We project rn onto the space of & so that its residual can be uncorrelated with 8. We call this
residual as the projected predicted residual, Pr,. Then Pr, is defined as
Pr,= r,— Adg
such that cov(Pr,,z)=0, where

A =cov(r,g) [var(e)] '
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The mean of Pr, is

E(Pr)= E(r,)—cov{rne)[var(e)] "'E(s) (3.5.2)
The variance of Pr, is
var(Pr,)= var(r,) —cov{r,e) [var(g)] “lcovie,r,) (3.5.3)

4. Simulation Study

In the previous section, we investigated the distri butional behaviors of five different residuals. Since the
goal of this paper is to define the recursive residual in nonlinear regression models, we must check the
residuals whether they have the same properties of recursive residuals as in linear models. As we have seen
in section 3, it is very hard to compare them algebraically. thus we employ the simulation method to
compare them in various aspects.

First, we use three different response functions which are
i) f(8)=8, V1x—§,1+6
i) f(6)=8,- (1+e”'i‘)

i) (8)=6,-¢ Ix—@z1+n
The magnitude of intrinsic curvatures of each model is in increasing order of (i), (i), (ii)

Second, we use random values for x with different ranges which are

i) X~U(0.4)
i) X~U(1.5, 2.5)
i) X~u(-2, 6)

By changing the range of x, we tried to control the intrinsic curvature of each response function as
above, in increasing order of (i), (i), (ii).

Third, we use normal random number generator for €, where € ~N(0, 1) in the study.

Fourth, we generated data n=20 based on the above schemes with the true §,=2, §,=2 values, and
100 sample data set are used.

Fifth, we standardized each type of residual so that its mean is O and constant variance 02

Finally, we deleted case after case for each sample data set.

Now we summarize the results of the simulation study.

Table. 1.
£ f I I
K [ I} i | 1l il | Il i
5 none none ® 2B®® @G (DOE) none none @
OB @ C2O® | DODG | VO® same )] none o®
VO] @@ Q®® @ @ 20006 | OO® @ oG
10 ©0) @® OO®® | same same same @G @B QG
20 same same same same same same same same same
remarks : none—no candidate, same-all equivalent,® or @-* —good candidates

We used the pnormal probability plot to check the normality of each candidata at different K. All five
candidates follow the normal distribution. After checking correlation matrix of each candidate, we cau say
that they are all equivalently uncorrelated. There fore we conclude that the predicted residual is the most

stable one among those residuals.

5. Summary

The recursive residuals are obtained by the iterative processes as descrbed in section 2. They may
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require more efforts and time to compute and may face difficultie in ordering of data. But we can investi-
gate each case to be deleted and gather more informations on each case. The recursive residuals are much
more effective with conjecture of cusum technique.

We suggest to use the predicted residual for the construction of recursive residuals in nonlinear regres-
sion models. The assessment of influence and leverage by the connection with recursive residuals will be

necessary.
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