400 Bull. Korean Chem. Soc., Vol. 10, No. 4, 1989

References

- W. Y. Lee, B. G. Moon, C. H. Park, S. H. Bang and J. H. Lee, Bull. Korean Chem. Soc., 9(5), 325-8 (1988).
- E. J. Corey and G. H. Posner, J. Am. Chem. Soc., 90(20), 5615 (1968).
- E. J. Corey and G. H. Posner, J. Am. Chem. Soc., 89(15), 3911 (1967).
- 4. M. Tamura and J. Kochi, Synthesis, 303 (1971).
- H. O. House, D. G. Koepsell and W. J. Campbell, J. Org. Chem., 37, 1003 (1972).
- A. R. Bassidale, C. Eaborn and D. R. M. Walton, J. Chem. Soc. (c), 2506 (1969).
- K. Tamao, K. Sumitani, Y. Kiso, M. Zembayashi, A. Fujioka, S. Kodama, A. Minato and M. Kumada, Bull. Chem. Soc. Jpn., 49(7), 1958–1969 (1976).
- 8. T. Hayashi, N. Nagashima and M. Kumada, Tetrahed-

ron Lett., 21, 4623 (1980).

- 9. F. Derguni-Boumechal and G. Linstrumelle, Tetrahedron Lett., 36, 3225 (1976).
- C. R. Johnson and G. A. Dutra, J. Am. Chem. Soc., 95(23), 7777 (1973).
- H. P. Dang and G. Linstrumelle, *Tetrahedron Lett.*, 2, 191–194 (1978).
- G. M. Whitesides, J. San Filippo, Jr., C. P. Casey and E. J. Panek, J. Am. Chem. Soc., 89, 5302 (1967).
- D. I. Davies, J. N. Done and D. H. Hey, J. Chem. Soc. (c), 2506 (1969).
- 14. D. C. Sayles and M. S. Kharasch, J. Org. Chem., 26, 4210 (1961).
- G. M. Whitesides and W. F. Fischer, Jr., J. San Filippo, Jr., R. W. Bashe, Herbert O. House, J. Am. Chem. Soc., 91(17), 4871 (1969).

Reactions of Molybdenum Atoms with various Conjugated Dienes

Sock Sung Yun*, Yun Dong Chol[†], and In Soon Chang[†]

Department of Chemistry, Chungnam National University, Taejeon 302 – 764 †Korea Advanced Energy Research Institute, Taejeon 302 – 353. Received April 7, 1989

Tris(π^4 -butadiene)molybdenum 1 was first obtained by Skell *et al.*¹ by cocondensation of the metal atoms with 1,3butadiene. The structure of 1 has an *s*-*cis* conformation and 1 adopts a trigonal prismatic rather than a octahedral geometry about the metal atom.^{2,3} And yet the bond lengths of the terminal and internal C-C bonds in 1 are not clearly defined. We are interested in π -complexes and have synthesized some stable π -complexes, tris(isoprene)molybdenum 2 and tris (2,3-dimethyl-1,3-butadiene)molybdenum 3, by cocondensation method.

We would like to report the effect of methyl substituents of diene ligand and the structures of these π -complexes. Analytical and spectroscopic data for 1, 2, and 3 are listed in Table 1. 1 forms yellow plates and 3 yellow needles. 1 decomposes after a week in air. 3 is the most stable among the three compounds. 3 is stable over 3 months in air and then decomposes slowly. However, 2 is a greenish yellow liquid at room temperature and turns a dark green sticky solid after a few days in air.

Yields and spectroscopic properties of 1, 2, and 3 indicate that methyl groups at carbon 2 or 3 position in 1,3-butadiene affect the formation of these π -complexes. Since electron donating ability of the diene ligand increases with methyl substituents, we can expect the stability and yield increase in the order of $1 \sim 2 < 3$. Yields of 1, 2, and 3, based amount of molybdenum vaporized are 20-40, 30-40, and 60-70 percentages, respectively. The i.r. spectra of 1, 2, and 3 suggest that there are strong π -bonding between Mo atom and diene ligand and methyl substituents affect the strength of π -bonding. The UV-Vis, spectra of 1, 2, and 3 show broad absorption

Table 1. Analytical and Spectroscopic Data

Compound and analysis ⁴ (%)	$\frac{1.\text{R.}^{b}(\text{cm}^{-1})}{\nu_{\text{C}} \ast \text{C} \cdot \nu_{\text{F}} \text{CH}}$	UV-Vis.'(nm) λ_{max}	1 H nmr d data δ (ppm)
1, (C ₄ H ₆) ₃ Mo	1490w, 3050m	314	4.58(m,6H), 1.56(qut,6H)
С. —; Н, —			0.45(dd,6H)
2, (C5H8)3Mo	1510m, 3040m	322	4.30(m,2H), 1.68(m.9H)
C, 60.09(60.00);			1.57(m.2H), 1.32(m.2H)
H, 8.1)(8.10)			0.37(m,211), -0.29(m,2H)
3, (C ₆ H ₁₀) ₃ Mo	1513m, 3040m	330	1.58(s,18H), 1.27(d.6H)
C, 63.51(63.15);			-0.47(d,6H)
H, 8.82(8.83)			

^aCalculated values are given in parentheses. ^bSpectra recorded for KBr disks or KBr windows. Intensity: w = week, m = medium. ^cMeasured in *n*-hexane at room temperature. ^dChemical shifts referenced to residual solvent in toluene- d_8 at room temperature. Multiplicity; s = singlet, d = doublet, dd = double doublet. qut = quintet, m = multiplet.

bands, due to d-d transition in the complexes. In these d-d transition bands, the red shifts occurred with methyl substituents indicate that the delocalization of electron increases with the methyl substituent. The methyl substituent effect is also observed in ¹H nmr spectra of these π -complexes. In-

Communications to the Editor

Figure 1. 300 MHz¹H NMR spectra of $(C_6H_{10})_3$ Mo, 3, and $(C_6H_{10})_2$ (CO)₃Mo, 4, at room temperature in toluene- d_8 and benzen- d_6 , respectively.

creasing the number of methyl group at 2- or 3-position in 1,3-butadiene gives the high field chemical shifts, *i.e.* δ 1 0.45, 1.56; **2**-0.29, 1.32; **3**-0.47, 1.27 ppm, for the terminal protons of the diene ligands. These ¹H nmr data suggest that the dihedral angle (a) subtended by the Cl-M-C4 and C1-C2-C3-C4 planes would increase by the methyl substituents on the diene ligangds. The dihedral angle calculated from the x-ray structure analysis data² of 1 is 86.44°. Then the dihedral angles of 2 and 3 are expected larger than that of **1**. The x-ray structure analysis⁴ of 3 in this laboratory indicates the dihedral angle of 3 to be 95°.

For some η^4 -butadiene-transition metal complexes, a fluxional behaviour of butadiene has been observed in solution.⁵ However, ¹H nmr spectra of 3 show constant peaks in toluene- d_8 in the temperature range from room temperature to 100 °C. This indicates that the fluxional behavior of the ligands in 3 does not occur in this temperature range.

In conclusion, the methyl substituents on 2- and 3-position of 1,3-butadiene affect stability of π -complex of the butadiene by their electron donating ability to the π -system.

By the way, 1 reacts with CO to give isomeric 1,5.9-cyclododecatriene and Mo(CO)₆.⁶ However, 3 reacts with CO to give $(C_6H_{10})_2(CO)_3Mo$, 4, *via* following reaction.

Mo + $CH_2CCH_3CCH_3CH_2 \xrightarrow{cocondensation} [solid matrix]$

$$\frac{\text{CO, 650 mmHg}}{\text{warm up to r.t.}} \quad (\text{CH}_2\text{CCH}_3\text{CH}_2\text{CH}_2)_2(\text{CO}_3)\text{Mo}$$

4 is obtained as greenish yellow liquid in 20~30% yield (~ 50 mg). This is somewhat stable (a few hours) in the air. The i.r. spectrum⁷ of 4 shows that the CO coordinates to the Mo atom and the vibrational mode of the coordinated diene is essentially similar to that in 3.4 was identified by elemental (Mo: 27.9%), mass spectrum,⁸ and ¹H nmr⁹ analysis. ¹H nmr spectrum of 4 is shown in comparisom with ¹H nmr spectrum of 3 in Figure 1. ¹H nmr spectrum of 4 shows that two ligands in 4 are coordinated differently, i.e. one ligand in 4 is indicated by the very high frequency signals of its terminal protons at δ –0.34 (d, Ha) and 1.40 (d, Hs) ppm, while the other ligand at $\delta 0.85$ (m, Ha) and 1.21 (m, Hs). So we assume that the structure of 4 has that one of the 2,3-dimethyl-1,3-butadiene ligands binds to the molybdenum atom via π -interaction and the other via σ -interaction. Mass spectrum of 4 is very similar to that of 3. However, there are several peaks which account for the combination of C_6H_{10} and CO fragments. Surprisingly, there are also peaks for $\frac{c}{c} > c = c < \frac{c}{c}$

skeleton which do not appear in the mass spectrum of 3. Further work on this and related mononuclear π -complexes is being directed toward obtaining more structural information and new stable π -complexes.

Acknowledgement. We acknowledge financial support from the Korea Sciece and Engineering Foundation.

References

- P. S. Skell, E. M. Van Dam, and M. P. Silvon, J. Am. Chem. Soc., 96, 626 (1974).
- P. S. Skett and M. J. McGlinchey, Angew. Chem. Int. Ed. Engl., 14, 195 (1975).
- J. C. Green, M. R. Kelly, P. D. Grebenik, C. E. Briant, N. A. McEvoy, and D. M. P. Mingos, J. Organomet. Chem., 228, 239 (1982).
- 4. The result will be published elsewhere.
- H. Yasuda and A. Nakamura, Angew. Chem. Int. Ed. Engl., 26, 723 (1987).
- Y. Kai, N. Kanehisa, K. Miki, N. Kassai, K. Mashima, K. Nagasuna, H. Yasuda, and A. Nakamura, J. Chem. Soc., Chem. Commun., 191 (1982).
- 7. 4: $\nu_{C0} = 1950(s,br)$, 1860(s,br) cm⁻¹, $\nu_{C=C}$ 1513(m) cm⁻¹.
- 8. 3: Fragment, m/e (% base) = M, 344 (28); $M-C_6H_{10}$, 262 (73); $M-C_6H_{10}$ -6H, 256 (100); $M-2C_6H_{10}$ -4H, 176 (6); Mo, 98 (5); C_6H_{10} , 82 (6); C_5H_7 , 67 (26); C_4H_7 , 55 (8); C_4H_6 , 54 (10); C_4H_5 , 53 (6), 4: Fragment, m/e (% base) = M-2H, 344 (26); M-3CO, 262 (89); M-3CO-6H, 256 (100); $M-3CO-C_6H_{10}$ -4H, 176 (13); C_5H_7 (CO), 123 (13); Mo, 98 (11); C_6H_{10} , 82 (68); C_6H_2 , 74 (95); C_5H_7 , 67 (87); C_4H_7 , 55 (45); C_4H_6 , 54 (26); C_4H_5 , 53 (24), Fragments of 2,3-dimethyl-1,3-butadiene: Fragment, m/e (% base) = C_6H_{10} , 82 (70); C_5H_7 , 67 (100); C_4H_6 , 54 (38); C_4H_5 , 53 (22).
- δ-0.34 (d, 2H), 0.85 (m, 2H), 1.21 (m, 2H), 1.40 (d, 2H), 1.66 (s, 12H) (ppm).